Sensor array calibration with joint-block-sparsity in the presence of multiple separable observations
Yükleniyor...
Dosyalar
Tarih
2019
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer London Ltd
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In sparsity-based optimization problems, one of the major issue is computational complexity, especially when the unknown signal is represented in multi-dimensions such as in the problem of 2-D (azimuth and elevation) direction-of-arrival (DOA) estimation. In this paper, a low-complexity sparsity-based method is proposed for DOA estimation in the presence of array imperfections such as mutual coupling. In order to reduce the complexity of the optimization problem, this paper introduces a new sparsity structure that can be used to model the optimization problem in case of multiple data snapshots and multiple separable observations where the dictionary can be decomposed into two parts: azimuth and elevation dictionaries. The proposed sparsity structure is called joint-block-sparsity which exploits the sparsity in both multiple dimensions, namely azimuth and elevation, and data snapshots. In order to model the joint-block-sparsity in the optimization problem, triple mixed norms are used. In the simulations, the proposed method is compared with both sparsity-based techniques and subspace-based methods as well as the Cramer-Rao lower bound. It is shown that the proposed method effectively calibrates the sensor array with significantly low complexity and sufficient accuracy.
Açıklama
Elbir, Ahmet M./0000-0003-4060-3781
WOS: 000472530900009
WOS: 000472530900009
Anahtar Kelimeler
Direction of arrival estimation, Mutual coupling, Joint-block-sparsity, Separable observations, Triple mixed norms
Kaynak
Signal Image And Video Processing
WoS Q Değeri
Q3
Scopus Q Değeri
Q2
Cilt
13
Sayı
5