Numerical Approximations and Fractional Calculus: Extending Boole's Rule with Riemann-LiouvilleFractional Integral Inequalities

Küçük Resim Yok

Tarih

2025

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Mdpi

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

This paper develops integral inequalities for first-order differentiable convex functions within the framework of fractional calculus, extending Boole-type inequalities to this domain. An integral equality involving Riemann-Liouville fractional integrals is established, forming the foundation for deriving novel fractional Boole-type inequalities tailored to differentiable convex functions. The proposed framework encompasses a wide range of functional classes, including Lipschitzian functions, bounded functions, convex functions, and functions of bounded variation, thereby broadening the applicability of these inequalities to diverse mathematical settings. The research emphasizes the importance of the Riemann-Liouville fractional operator in solving problems related to non-integer-order differentiation, highlighting its pivotal role in enhancing classical inequalities. These newly established inequalities offer sharper error bounds for various numerical quadrature formulas in classical calculus, marking a significant advancement in computational mathematics. Numerical examples, computational analysis, applications to quadrature formulas and graphical illustrations substantiate the efficacy of the proposed inequalities in improving the accuracy of integral approximations, particularly within the context of fractional calculus. Future directions for this research include extending the framework to incorporate q-calculus, symmetrized q-calculus, alternative fractional operators, multiplicative calculus, and multidimensional spaces. These extensions would enable a comprehensive exploration of Boole's formula and its associated error bounds, providing deeper insights into its performance across a broader range of mathematical and computational settings.

Açıklama

Anahtar Kelimeler

inequalities of Boole's type, fractional calculus, quadrature formulas, Riemann-Liouville fractional integrals, error bounds, functions with convexity, Lipschitz continuity, boundedness

Kaynak

Fractaland Fractional

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

9

Sayı

1

Künye