Federated Learning for Physical Layer Design
Yükleniyor...
Dosyalar
Tarih
2021
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Ieee-Inst Electrical Electronics Engineers Inc
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Model-free techniques, such as machine learning (ML), have recently attracted much interest toward the physical layer design (e.g., symbol detection, channel estimation, and beamforming). Most of these ML techniques employ centralized learning (CLK) schemes and assume the availability of datasets at a parameter server (PS), demanding the transmission of data from edge devices, such as mobile phones, to the PS. Exploiting the data generated at the edge, federated learning (FL) has been proposed recently as a distributed learning scheme, in which each device computes the model parameters and sends them to the PS for model aggregation, while the datasets are kept intact at the edge. Thus, FL is more communication-efficient and privacy-preserving than CL and applicable to the wireless communication scenarios, wherein the data are generated at the edge devices. This article presents the recent advances in FL-based training for physical layer design problems. Compared to CL, the effectiveness of FL is presented in terms of communication overhead with a slight performance loss in the learning accuracy. The design challenges, such as model, data, and hardware complexity, are also discussed in detail along with possible solutions.
Açıklama
Anahtar Kelimeler
Wireless Communication; Training Data; Performance Evaluation; Image Edge Detection; Computational Modeling; Distributed Databases; Physical Layer
Kaynak
Ieee Communications Magazine
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
59
Sayı
11