The Univalent Function Created by the Meromorphic Functions Where Defined on the Period Lattice

Küçük Resim Yok

Tarih

2019

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Emrah Evren KARA

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

The function $ \xi(z)$ is obtained from the logarithmic derivative function  $\sigma(z)$. The elliptic function $ \wp(z) $ is also derived from the $ \xi(z) $ function. The function $ \wp(z) $ is a function of double periodic and meromorphic function on lattices region. The function $ \wp(z) $ is also double function. The function $ \varphi(z) $  meromorphic and univalent function  was obtained  by the serial expansion of the function $ \wp(z)$. The function $ \varphi(z) $ obtained here is shown to be a convex function.

Açıklama

Anahtar Kelimeler

Convex function|Elliptic function|Latices|Meromorphic function

Kaynak

Communications in Advanced Mathematical Sciences

WoS Q Değeri

Scopus Q Değeri

Cilt

2

Sayı

4

Künye