The Univalent Function Created by the Meromorphic Functions Where Defined on the Period Lattice
Küçük Resim Yok
Tarih
2019
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Emrah Evren KARA
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
The function $ \xi(z)$ is obtained from the logarithmic derivative function $\sigma(z)$. The elliptic function $ \wp(z) $ is also derived from the $ \xi(z) $ function. The function $ \wp(z) $ is a function of double periodic and meromorphic function on lattices region. The function $ \wp(z) $ is also double function. The function $ \varphi(z) $ meromorphic and univalent function was obtained by the serial expansion of the function $ \wp(z)$. The function $ \varphi(z) $ obtained here is shown to be a convex function.
Açıklama
Anahtar Kelimeler
Convex function|Elliptic function|Latices|Meromorphic function
Kaynak
Communications in Advanced Mathematical Sciences
WoS Q Değeri
Scopus Q Değeri
Cilt
2
Sayı
4