Deep Learning Design for Joint Antenna Selection and Hybrid Beamforming in Massive MIMO

dc.contributor.authorElbir, Ahmet M.
dc.contributor.authorMishra, Kumar Vijay
dc.date.accessioned2021-12-01T18:48:35Z
dc.date.available2021-12-01T18:48:35Z
dc.date.issued2019
dc.department[Belirlenecek]en_US
dc.descriptionUSNC-URSI Radio Science Meeting / IEEE International Symposium on Antennas and Propagation (AP-S) -- JUL 07-12, 2019 -- Atlanta, GAen_US
dc.description.abstractIn this paper, we propose a deep-learning-based for joint antenna selection and hybrid beamformer design problem in mmWave massive MIMO systems. In this respect, we treat both problems as a classification problem. We design two convolutional neural networks (CNNs) which accept the input as the channel matrix and it yields the output as the optimum antenna subarray. The selected part of channel matrix is fed to the second CNN which gives the output as the analog and baseband beamformers. We evaluate the performance of the proposed approach through numerical simulations and show that our CNN framework provides significantly better performance as compared to the conventional techniques such as orthogonal matching pursuit.en_US
dc.description.sponsorshipInst Elect & Elect Engineers, IEEE Antennas & Propagat Soc, Int Union Radio Sci, U S Natl Commen_US
dc.identifier.endpage1586en_US
dc.identifier.isbn978-1-7281-0692-2
dc.identifier.issn1522-3965
dc.identifier.startpage1585en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12684/10564
dc.identifier.wosWOS:000657207105052en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isoenen_US
dc.publisherIeeeen_US
dc.relation.ispartof2019 Ieee International Symposium On Antennas And Propagation And Usnc-Ursi Radio Science Meetingen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleDeep Learning Design for Joint Antenna Selection and Hybrid Beamforming in Massive MIMOen_US
dc.typeConference Objecten_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
Ä°sim:
10564.pdf
Boyut:
361.71 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text