Yüz bulma ve tanıma sistemleri kullanarak kimlik tespitinin yapılması

dc.contributor.advisorKulaç, Selman
dc.contributor.authorHolat, Recep
dc.date.accessioned2021-02-25T15:04:30Z
dc.date.available2021-02-25T15:04:30Z
dc.date.issued2014
dc.departmentDÜ, Fen Bilimleri Enstitüsü, Elektrik-Elektronik Mühendisliği Ana Bilim Dalıen_US
dc.descriptionYÖK Tez No: 379793en_US
dc.description.abstractSon yıllarda yüz tanıma alanında önemli başarılar elde edilmiştir. Yüz tanıma, bankacılıkta kimlik onaylamada, kontrollü alanlara girişte, başta havaalanlarında olmak üzere güvenliğin üst düzey olduğu yerlerde, makineleri kontrol etmede ve kişilerin takibinde kullanılan özel bir örüntü tanımadır. Bu tez çalışmasında bir yüz tanıma sistemi tasarlanmış, PCA (Temel Bileşen Analizi), LDA (Doğrusal Ayraç Analizi) ve LBP (Yerel İkili Örüntü) yüz tanıma yöntemleri kullanılarak Yale ve ORL veritabanları üzerinde test edilmiştir. Yüzün tespit edilmesinde Adaboost algoritması kullanılmıştır. Yale veritabanı, sağdan aydınlanmış, merkezden aydınlanmış, soldan aydınlanmış, gözlüksüz, gözlüklü, normal, göz kırpmış, uykulu, şaşkın, mutlu, üzgün yüz görüntüleri içermektedir. Yüz tanıma ön işleme adımlarında HE (Histogram Eşitleme), HE+Medyan Filtresi, HE+Gaussian Filtesi, HE+Laplace Filtresi kullanılmıştır. Görüntünün poz ve aydınlatma durumuna göre sistemin en uygun yöntemi seçmesi sağlanmıştır. Bu şekilde yüz tanıma oranında %6' ya kadar olan başarım artışları elde edilmiştir. Uygulama Microsoft Visual Studio 2010 C#.Net programı kullanılarak geliştirilmiştir. Görüntü işleme algoritmaları için EMGU CV kütüphanesi, veritabanı işlemleri için SQL Server 2008 Express kullanılmıştır.en_US
dc.description.abstractIn recent years, significant achievements have been achieved in the field of face recognition. Face recognition are special pattern recognition which are used in banking for identity approving and the entrance of controlled areas, the places where the security control impending to airports, to control machines,to follow-up of persons. In this study, A face recognition system is designed, implemented and tested on the Yale and ORL face databases have been performed by using PCA (Principal Component Analysis), LDA (Linear Discriminant Analysis), LBP (Local Binary Patterns) face recognition methods. Yale database consist of right-light, center-light, left-right, no glasses, glasses, normal, wink, sleepy, surprised, happy, sad images. In the face recognition pre-processing steps, HE (Histogram Equalization), HE+ Median Filter, HE+Gaussian filter, He+Laplace Filter was used. It is provided to select the appropriate method from the system depending on state of image. Thus the face recognition performance increases of up to 6% was gained. Application was developed by using Microsoft Visual Studio 2010 C #. EMGU CV library for image processing algorithms and SQL Server 2008 Express for database processing were useden_US
dc.identifier.endpage82en_US
dc.identifier.startpage1en_US
dc.identifier.urihttps://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=48XPj7KKQhKUgntkUiKO3N2iRHJAzuD347YuvoGRqEffKRYYbcj2PF5aJ0CNwwFu
dc.identifier.urihttps://hdl.handle.net/20.500.12684/7175
dc.institutionauthorHolat, Recepen_US
dc.language.isotren_US
dc.publisherDüzce Üniversitesien_US
dc.relation.publicationcategoryTezen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrolen_US
dc.subjectComputer Engineering and Computer Science and Controlen_US
dc.subjectYüz görüntüsüen_US
dc.subjectFace imageen_US
dc.titleYüz bulma ve tanıma sistemleri kullanarak kimlik tespitinin yapılmasıen_US
dc.title.alternativeId identification by using face detection and recognition systemsen_US
dc.typeMaster Thesisen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
379793.pdf
Boyut:
2.35 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text

Koleksiyon