Derin öğrenme tabanlı modülasyon tanıma
Küçük Resim Yok
Tarih
2023
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Haberleşme teknolojilerinde her geçen gün artan sinyal çeşitliliği, bu sinyallerin tanımlanması ve sınıflandırılması gerekliliğini ortaya çıkarmıştır. Beşinci nesil (fifth generation, 5G) ve ötesi kablosuz haberleşme teknolojileri, birçok uygulama için vazgeçilmez iletişim araçları haline gelmiştir. Otomatik modülasyon tanıma (automatic modulation recognition, AMR) tekniği, özellikle yeni nesil nesnelerin interneti, akıllı şehirler, otonom araçlar ve bilişsel radyo gibi birçok uygulama için temel bileşen haline gelmiştir. Bu çalışmada sekiz farklı modülasyon türü kullanılarak bir veri seti oluşturulmuş ve derin öğrenme (deep learning, DL) algoritmalarından olan evrişimli sinir ağları (convolutional neural network, CNN) kullanılarak farklı sinyal-gürültü oranlarında (signal-to-noise ratio, SNR) modülasyon türü sınıflandırılması yapılmıştır. Sonuç olarak SNR değerleri 10 dB, 20 dB ve 30 dB iken CNN ile sınıflandırma işleminde sırasıyla %80,76, %99,89 ve %100 doğruluk sağlanmıştır.
Açıklama
Anahtar Kelimeler
Kaynak
Uludağ Üniversitesi Mühendislik Fakültesi Dergisi
WoS Q Değeri
Scopus Q Değeri
Cilt
28
Sayı
1