Simultaneous integer sequences and solving the pell equation

dc.contributor.authorÖzkoç, Arzu
dc.date.accessioned2020-04-30T13:33:22Z
dc.date.available2020-04-30T13:33:22Z
dc.date.issued2016
dc.departmentDÜ, Fen-Edebiyat Fakültesi, Matematik Bölümüen_US
dc.description.abstractLet k ? 1 be a fixed integer. In this work, we set two simultaneous integer sequences defined by Xn = (4k2 + 1)Xn-1 + (4k2 + 1)Xn-2 - Xn-3 and Yn = (4k2 + 1)Yn-1 + (4k2 + 1)Yn-2 - Yn-3 for n ? 3 with initial terms X0 = 1, X1 = 2k2 +1, X2 = 8k4 + 8k2 +1 and Y0 = 0, Y1 = 2k, Y2 = 8k3 + 4k and derived some algebraic identities on them. Further, we are able to determine all integer solutions of the Pell equation x2 - (k2 + 1)y2 = 1 as (xn,yn) = (Xn, Yn) for every n ? 1. © 2016, Jangjeon Mathematical Society. All rights reserved.en_US
dc.identifier.endpage275en_US
dc.identifier.issn1229-3067
dc.identifier.issue2en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage263en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12684/621
dc.identifier.volume26en_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherJangjeon Mathematical Societyen_US
dc.relation.ispartofAdvanced Studies in Contemporary Mathematics (Kyungshang)en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBinary linear recurrences; Continued fraction; Pell equation; Simultaneous integer sequencesen_US
dc.titleSimultaneous integer sequences and solving the pell equationen_US
dc.typeArticleen_US

Dosyalar