A study on Matrix Domain of Riesz-Euler Totient Matrix in the Space of $p$-Absolutely Summable Sequences

dc.contributor.authorİlkhan, Merve
dc.contributor.authorBayrakdar, Mehmet Akif
dc.date.accessioned2025-03-24T19:50:07Z
dc.date.available2025-03-24T19:50:07Z
dc.date.issued2021
dc.departmentDüzce Üniversitesi
dc.description.abstractIn this study, a special lower triangular matrix derived by combining Riesz matrix and Euler totient matrix is used to construct new Banach spaces. $\alpha-$,$\beta-$,$\gamma-$duals of the resulting spaces are obtained and some matrix operators are characterized. Finally by the aid of measure of non-compactness, the conditions for which a matrix operator on these spaces is compact are determined.
dc.identifier.endpage25
dc.identifier.issn2651-4001
dc.identifier.issue1
dc.identifier.startpage14
dc.identifier.urihttps://hdl.handle.net/20.500.12684/19526
dc.identifier.volume4
dc.language.isoen
dc.publisherEmrah Evren KARA
dc.relation.ispartofCommunications in Advanced Mathematical Sciences
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_DergiPark_20250324
dc.subjectsequence spaces|$\alpha-$|$\beta-$|$\gamma-$duals|Matrix mappings|Hausdorff measure of non-compactness|Compact operators
dc.titleA study on Matrix Domain of Riesz-Euler Totient Matrix in the Space of $p$-Absolutely Summable Sequences
dc.typeArticle

Dosyalar