Robust Hybrid Beamforming with Quantized Deep Neural Networks

dc.contributor.authorElbir, Ahmet Musab
dc.contributor.authorMishra, Kumar Vijay
dc.date.accessioned2020-04-30T13:33:18Z
dc.date.available2020-04-30T13:33:18Z
dc.date.issued2019
dc.departmentDÜ, Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.description29th IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2019 -- 13 October 2019 through 16 October 2019 -- 155874en_US
dc.description.abstractHybrid beamforming is integral to massive multiple-input multiple-output (MIMO) communications in reducing the training overhead and hardware cost associated with large antenna arrays. Prior works have employed optimization and greedy search to jointly estimate the precoder and combiner weights. High computational complexity of these methods apart, their performance strongly relies on accurate channel information. In this paper, we propose a computationally efficient, deep learning approach that also provides robust performance against the deviations in the channel characteristics. Further, we employ a convolutional neural network with quantized weights (Q-CNN) so that it is deployable in mobile devices that have less memory resources and low overhead requirements. We show that the proposed Q-CNN, saved in at least 6 bits, yields superior performance over conventional massive MIMO hybrid beamforming. © 2019 IEEE.en_US
dc.identifier.doi10.1109/MLSP.2019.8918866en_US
dc.identifier.isbn9781728108247
dc.identifier.issn2161-0363
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://dx.doi.org/10.1109/MLSP.2019.8918866
dc.identifier.urihttps://hdl.handle.net/20.500.12684/604
dc.identifier.volume2019-Octoberen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherIEEE Computer Societyen_US
dc.relation.ispartofIEEE International Workshop on Machine Learning for Signal Processing, MLSPen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectConvolutional neural networks; deep learning; hybrid beamforming; massive MIMO; quantizationen_US
dc.titleRobust Hybrid Beamforming with Quantized Deep Neural Networksen_US
dc.typeConference Objecten_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
0604.pdf
Boyut:
175.87 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text