A second order accurate method for a parameterized singularly perturbed problem with integral boundary condition

dc.authorscopusid8629386700
dc.authorscopusid56082815700
dc.authorscopusid6506398616
dc.contributor.authorKudu, M.
dc.contributor.authorAmirali, I.
dc.contributor.authorAmiraliyev, G. M.
dc.date.accessioned2021-12-01T18:38:51Z
dc.date.available2021-12-01T18:38:51Z
dc.date.issued2022
dc.department[Belirlenecek]en_US
dc.description.abstractIn this paper, we consider a class of parameterized singularly perturbed problems with integral boundary condition. A finite difference scheme of hybrid type with an appropriate Shishkin mesh is suggested to solve the problem. We prove that the method is of almost second order convergent in the discrete maximum norm. Numerical results are presented, which illustrate the theoretical results. © 2021 Elsevier B.V.en_US
dc.identifier.doi10.1016/j.cam.2021.113894
dc.identifier.issn03770427
dc.identifier.scopus2-s2.0-85119251175en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.urihttps://doi.org/10.1016/j.cam.2021.113894
dc.identifier.urihttps://hdl.handle.net/20.500.12684/9872
dc.identifier.volume404en_US
dc.identifier.wosWOS:000729991200007en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.relation.ispartofJournal of Computational and Applied Mathematicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFinite difference schemeen_US
dc.subjectIntegral boundary conditionen_US
dc.subjectParameterized problemen_US
dc.subjectShishkin meshen_US
dc.subjectSingular perturbationen_US
dc.subjectUniform convergenceen_US
dc.titleA second order accurate method for a parameterized singularly perturbed problem with integral boundary conditionen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
9872.pdf
Boyut:
427.01 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text