Very ductile polymer concrete using carbon nanotubes
Yükleniyor...
Dosyalar
Tarih
2019
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier Sci Ltd
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Polymer concrete (PC) is a type of concrete where a polymer is used to replace cement as the binder. PC is an impermeable and chemical resistant concrete with appreciable mechanical properties. However, for most structural engineers, PC advantages do not outweigh its higher cost when compared with normal cement concrete. We report on the production of very ductile PC (measured by tensile strain at failure) with appreciable tensile strength utilizing a hybrid mixture of pristine and carboxyl (COOH) functionalized multi-walled carbon nanotubes (MWCNTs) at 2.0 wt% of epoxy resin. Experimental investigations reveal that COOH functionalization maximizes PC ductility reaching unprecedented 5.5% failure strains and increasing toughness by 184%. Fourier transformation infrared spectroscopy and dynamic modulus analysis indicate an increase in crosslinking density of the epoxy matrix up to 84% due to the carbonyl band formation induced by the COOH functionalization of MWCNTs. The significant improvement in ductility and energy absorption provides a promising platform for creating very ductile PC with attractive properties. (C) 2018 Elsevier Ltd. All rights reserved.
Açıklama
Reda Taha, Mahmoud M./0000-0002-3707-9336; Emiroglu, Mehmet/0000-0002-0214-4986
WOS: 000456755400042
WOS: 000456755400042
Anahtar Kelimeler
Mixture Proportioning, Carbon Nanotubes, Tensile Properties, Polymers, Concrete
Kaynak
Construction And Building Materials
WoS Q Değeri
Q1
Scopus Q Değeri
Cilt
196