A novel hyper-heuristic algorithm: an application to automatic voltage regulator
Küçük Resim Yok
Tarih
2024
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer Science and Business Media Deutschland GmbH
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
This paper presents a novel optimization algorithm called hyper-heuristic fitness-distance balance success-history-based adaptive differential evolution (HH-FDB-SHADE). The hyper-heuristic algorithms have two main structures: a hyper-selection framework and a low-level heuristic (LLH) pool. In the proposed algorithm, the FDB method is preferred as a high-level selection framework to evaluate the LLH pool algorithms. In addition, a total of 10 different strategies is derived from five mutation operators and two crossover methods for using them as the LLH pool. Balancing the exploration and exploitation capability of FDB is the main reason for being the selection framework of the proposed algorithm. The success of the HH-FDB-SHADE algorithm was tested on CEC-17 and CEC-20 benchmark test suits for different dimensional search spaces, and the obtained solutions from the HH-FDB-SHADE were compared to 10 different LLH pool algorithms. In addition, the HH-FDB-SHADE algorithm has been applied to optimize the control parameters of PID, PIDF, FOPID, and PIDD2 in the optimal automatic voltage regulator (AVR) design problem to reveal the improved algorithm's performance more clearly and prove its success in solving engineering problems. The results obtained from the AVR system are compared with five other effective meta-heuristic search algorithms such as the fitness-distance balance Lévy Flight distribution, differential evolution, Harris–Hawks optimization, Barnacles mating optimizer, and Moth–Flame optimization algorithms in the literature. The results of the statistical analyses indicate that HH-FDB-SHADE is the best-ranked algorithm for solving CEC-17 and CEC-20 benchmark problems and gives better results compared to the LLH pool algorithms. Besides, the proposed algorithm is more effective and robust than five other meta-heuristic algorithms in solving optimal AVR design problems. © 2024 Elsevier B.V., All rights reserved.
Açıklama
Anahtar Kelimeler
Automatic Voltage Regulator, Fitness-distance Balance, Hyper-heuristic Search, Success History-based Adaptive Differential Evolution, Benchmarking, Heuristic Methods, Proportional Control Systems, Robust Control, Three Term Control Systems, Automatic Voltage Regulator, Differential Evolution, Distance Balance, Fitness-distance Balance, Heuristic Search, Hyper-heuristic Search, Hyper-heuristics, Selection Framework, Success History-based Adaptive Differential Evolution, Voltage Regulator's, Heuristic Algorithms
Kaynak
Neural Computing and Applications
WoS Q Değeri
Scopus Q Değeri
Q1
Cilt
36
Sayı
34












