Prediction of compressive strength of heavyweight concrete by ANN and FL models
dc.contributor.author | Başyiğit, Celalettin | |
dc.contributor.author | Akkurt, İskender | |
dc.contributor.author | Kılınçarslan, Şemsettin | |
dc.contributor.author | Beycioğlu, Ahmet | |
dc.date.accessioned | 2020-04-30T23:21:15Z | |
dc.date.available | 2020-04-30T23:21:15Z | |
dc.date.issued | 2010 | |
dc.department | DÜ, Teknik Eğitim Fakültesi, Yapı Eğitimi Bölümü | en_US |
dc.description | Akkurt, Iskender/0000-0002-5247-7850; Kilincarslan, Semsettin/0000-0001-8253-9357 | en_US |
dc.description | WOS: 000277940600001 | en_US |
dc.description.abstract | The compressive strength of heavyweight concrete which is produced using baryte aggregates has been predicted by artificial neural network (ANN) and fuzzy logic (FL) models. For these models 45 experimental results were used and trained. Cement rate, water rate, periods (7-28-90 days) and baryte (BaSO(4)) rate (%) were used as inputs and compressive strength (MPa) was used as output while developing both ANN and FL models. In the models, training and testing results have shown that ANN and FL systems have strong potential for predicting compressive strength of concretes containing baryte (BaSO(4)). | en_US |
dc.identifier.doi | 10.1007/s00521-009-0292-9 | en_US |
dc.identifier.endpage | 513 | en_US |
dc.identifier.issn | 0941-0643 | |
dc.identifier.issue | 4 | en_US |
dc.identifier.startpage | 507 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s00521-009-0292-9 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12684/4161 | |
dc.identifier.volume | 19 | en_US |
dc.identifier.wos | WOS:000277940600001 | en_US |
dc.identifier.wosquality | Q4 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Neural Computing & Applications | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Heavyweight concrete | en_US |
dc.subject | Baryte | en_US |
dc.subject | Compressive strength | en_US |
dc.subject | Artificial neural networks | en_US |
dc.subject | Fuzzy logic | en_US |
dc.subject | Computer simulation | en_US |
dc.title | Prediction of compressive strength of heavyweight concrete by ANN and FL models | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- 4161.pdf
- Boyut:
- 494.93 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text