Forecasting COVID-19 recovered cases with Artificial Neural Networks to enable designing an effective blood supply chain

Yükleniyor...
Küçük Resim

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

This study introduces a forecasting model to help design an effective blood supply chain mechanism for tackling the COVID-19 pandemic. In doing so, first, the number of people recovered from COVID-19 is forecasted using the Artificial Neural Networks (ANNs) to determine potential donors for convalescent (immune) plasma (CIP) treatment of COVID-19. This is performed explicitly to show the applicability of ANNs in forecasting the daily number of patients recovered from COVID-19. Second, the ANNs-based approach is further applied to the data from Italy to confirm its robustness in other geographical contexts. Finally, to evaluate its forecasting accuracy, the proposed Multi-Layer Perceptron (MLP) approach is compared with other traditional models, including Autoregressive Integrated Moving Average (ARIMA), Long Short-term Memory (LSTM), and Nonlinear Autoregressive Network with Exogenous Inputs (NARX). Compared to the ARIMA, LSTM, and NARX, the MLP-based model is found to perform better in forecasting the number of people recovered from COVID-19. Overall, the findings suggest that the proposed model is robust and can be widely applied in other parts of the world in forecasting the patients recovered from COVID-19. © 2021 Elsevier Ltd

Açıklama

Anahtar Kelimeler

Artificial neural networks, Blood supply chain, CIP Therapy, COVID-19, Forecasting

Kaynak

Computers in Biology and Medicine

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

139

Sayı

Künye