ROBUST HYBRID BEAMFORMING WITH QUANTIZED DEEP NEURAL NETWORKS

dc.authoridElbir, Ahmet M./0000-0003-4060-3781
dc.authorwosidElbir, Ahmet M./X-3731-2019
dc.contributor.authorElbir, Ahmet M.
dc.contributor.authorMishra, Kumar Vijay
dc.date.accessioned2021-12-01T18:47:59Z
dc.date.available2021-12-01T18:47:59Z
dc.date.issued2019
dc.department[Belirlenecek]en_US
dc.descriptionIEEE 29th International Workshop on Machine Learning for Signal Processing (MLSP) -- OCT 13-16, 2019 -- Pittsburgh, PAen_US
dc.description.abstractHybrid beamforming is integral to massive multiple-input multiple-output (MIMO) communications in reducing the training overhead and hardware cost associated with large antenna arrays. Prior works have employed optimization and greedy search to jointly estimate the precoder and combiner weights. High computational complexity of these methods apart, their performance strongly relies on accurate channel information. In this paper, we propose a computationally efficient, deep learning approach that also provides robust performance against the deviations in the channel characteristics. Further, we employ a convolutional neural network with quantized weights (Q-CNN) so that it is deployable in mobile devices that have less memory resources and low overhead requirements. We show that the proposed Q-CNN, saved in at least 6 bits, yields superior performance over conventional massive MIMO hybrid beamforming.en_US
dc.description.sponsorshipIEEEen_US
dc.identifier.isbn978-1-7281-0824-7
dc.identifier.issn2161-0363
dc.identifier.urihttps://hdl.handle.net/20.500.12684/10427
dc.identifier.wosWOS:000534480500075en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isoenen_US
dc.publisherIeeeen_US
dc.relation.ispartof2019 Ieee 29Th International Workshop On Machine Learning For Signal Processing (Mlsp)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectConvolutional neural networksen_US
dc.subjectdeep learningen_US
dc.subjecthybrid beamformingen_US
dc.subjectmassive MIMOen_US
dc.subjectquantizationen_US
dc.subjectChannel Estimationen_US
dc.titleROBUST HYBRID BEAMFORMING WITH QUANTIZED DEEP NEURAL NETWORKSen_US
dc.typeConference Objecten_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
10427.pdf
Boyut:
180.01 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text