Mevcut yapı zemininde sıvılaşma analizi ve sonlu elemanlar yöntemiyle modelleme
Yükleniyor...
Dosyalar
Tarih
2022
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Düzce Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Bu tez çalışmasında, mevcut durumdaki bir yapının zemini jeolojik ve geoteknik açıdan incelenmiştir. Zeminin fiziksel ve mekanik özellikleri belirlemek için zemin çalışmaları yapılmıştır. Yapılan zemin çalışmalarından elde edilen parametreler kullanılmıştır. Bu parametreler kullanılarak Türkiye Bina ve Deprem Yönetmeliği 2018 dikkate alınarak yerel zemin sınıfı ZD olarak belirlenmiştir. Ayrıca zeminin taşıma gücü, oturma ve sıvılaşma hesapları yapılmıştır. TBDY 2018'e zeminin emniyetli taşıma gücü 337 kPa olarak hesaplanmıştır, toplam oturma 4,576 cm olarak hesaplanmıştır, yapılan sıvılaşma hesapları sonucunda yapı zemini sıvılaşmaya karşı güvensiz durumdadır. Sıvılaşma riskinden dolayı zemin iyileştirme gerekli duyulup jet grout uygulaması yapılmıştır. Temel çevresinde 13 metre uzunluğunda eğimli ve düz kolonlar imal edilmiştir ve bina zemini çevresinde geçirimsiz perde oluşturacak 18 metrelik kolonlar imal edilmiştir. İmal edilen kolonların tasarım hesapları yapılmıştır. 13 metrelik kolonların taşıma kapasitesi 61,3 ton hesaplanmıştır. 18 metrelik kolonların taşıma kapasitesi 88,9 ton olarak hesaplanmıştır. Jet grout uygulamasından sonra sıvılaşma hesabı yapılarak riskin giderildiği görülmüştür. İdealize edilen zemin profili sonlu elemanlar programı kullanarak üç boyutlu ve iki boyutlu olarak modellenmiştir. Üç boyutlu modelde, zeminde oluşan deplasman ve jet grout kolonlarının davranışı incelenmiştir. İki boyutlu modelde, proje binası zeminin deprem durumundaki davranışı incelenmiştir. Sıvılaşma durumu için sonlu elemanlar programında yapılan dinamik analiz sonucu ile sayısal hesaplamalar zemindeki sıvılaşma riskini varlığını ortaya koymaktadır. İyileştirme sonrası sayısal hesaplamalardaki riskin yok olması ve sonlu elemanlar yazılımının boşluk suyu basıncındaki azalış zeminin sıvılaşma durumunun iyileştiğini göstermektedir.
In this thesis work, soil of an existing structure was examined in terms of geological and geotechnical aspects. Soil studies were carried out to determine the physical and mechanical properties of the soil. Obtained parameters from the soil studies were used. Using these parameters, the local soil class was determined as ZD, considering Türkiye Building and Earthquake Regulation 2018. In addition to, bearing capacity, settlement and liquefaction calculations of soil were made. According to TBDY 2018, safe bearing capacity of the soil is calculated as 337 kPa, total settlement is was calculated as 4,576 cm, as a result of the liquefaction calculations made, the building soil is insecure against liquefaction. Due to risk of liquefaction, soil improvement was required and jet grout was applied. 13 meters long inclined and vertical columns were produced around the foundation and 18 meters columns were produced to from an impermeable curtain around the building soil. Design calculations pf the produced columns were made. The bearing capacity of the 13 meters columns is calculated as 61,3 tons. The bearing capacity of the 18 meters columns is calculated as 88,9 tons. After the jet grout application liquefaction calculation was made and it was seen that the risk was eliminated. Idealized soil profile is modeled as three-dimensional and two-dimensional using the finite element program. In the three-dimensional model, displacement in the soil and behavior of jet grout columns were examined. In two-dimensional model, behavior of the project building soil of in case of earthquake was examined. For the liquefaction situation, the result of the dynamic analysis made in the finite element program and numerical calculations reveal the existence of the liquefaction risk in the soil. Disappearance of the risk in numerical calculations after improvement and the decrease in the pore water pressure of the finite element software indicate that the liquefaction state of the soil has improved.
In this thesis work, soil of an existing structure was examined in terms of geological and geotechnical aspects. Soil studies were carried out to determine the physical and mechanical properties of the soil. Obtained parameters from the soil studies were used. Using these parameters, the local soil class was determined as ZD, considering Türkiye Building and Earthquake Regulation 2018. In addition to, bearing capacity, settlement and liquefaction calculations of soil were made. According to TBDY 2018, safe bearing capacity of the soil is calculated as 337 kPa, total settlement is was calculated as 4,576 cm, as a result of the liquefaction calculations made, the building soil is insecure against liquefaction. Due to risk of liquefaction, soil improvement was required and jet grout was applied. 13 meters long inclined and vertical columns were produced around the foundation and 18 meters columns were produced to from an impermeable curtain around the building soil. Design calculations pf the produced columns were made. The bearing capacity of the 13 meters columns is calculated as 61,3 tons. The bearing capacity of the 18 meters columns is calculated as 88,9 tons. After the jet grout application liquefaction calculation was made and it was seen that the risk was eliminated. Idealized soil profile is modeled as three-dimensional and two-dimensional using the finite element program. In the three-dimensional model, displacement in the soil and behavior of jet grout columns were examined. In two-dimensional model, behavior of the project building soil of in case of earthquake was examined. For the liquefaction situation, the result of the dynamic analysis made in the finite element program and numerical calculations reveal the existence of the liquefaction risk in the soil. Disappearance of the risk in numerical calculations after improvement and the decrease in the pore water pressure of the finite element software indicate that the liquefaction state of the soil has improved.
Açıklama
Anahtar Kelimeler
İnşaat Mühendisliği, Civil Engineering