CNN-based cognitive radar array selection

dc.contributor.authorElbir, Ahmet Musab
dc.contributor.authorMishra, Kumar Vijay
dc.contributor.authorEldar, Yonina
dc.date.accessioned2020-04-30T13:32:13Z
dc.date.available2020-04-30T13:32:13Z
dc.date.issued2019
dc.departmentDÜ, Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.description2019 IEEE Radar Conference, RadarConf 2019 -- 22 April 2019 through 26 April 2019 -- 152051en_US
dc.description.abstractIn cognitive radar, it may be desired to select an optimal subarray from a full antenna array in each scan to reduce the cost and computational complexity. Previous works on antenna selection rely on mostly optimization or greedy search methods. In this paper, we introduce a deep learning approach for antenna selection in a cognitive radar scenario. We design a deep convolutional neural network (CNN) to select the best subarray for direction-of-arrival estimation for each scan. The CNN accepts the array covariance matrix as its input and, unlike previous works, does not require prior knowledge about the target location. The performance of the proposed CNN approach is evaluated through numerical simulations. In particular, we show that it provides more accurate results than conventional support vector machines. © 2019 IEEE.en_US
dc.description.sponsorshipHorizon 2020 Framework Programme: 646804-ERC-COG-BNYQen_US
dc.description.sponsorshipACKNOWLEDGMENT Y.C.E. was funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 646804-ERC-COG-BNYQ.en_US
dc.identifier.doi10.1109/RADAR.2019.8835626en_US
dc.identifier.isbn9781728116792
dc.identifier.urihttps://dx.doi.org/10.1109/RADAR.2019.8835626
dc.identifier.urihttps://hdl.handle.net/20.500.12684/165
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2019 IEEE Radar Conference, RadarConf 2019en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAntenna selection; Cognitive radar; Convolutional neural networks; Deep learning; DoA estimationen_US
dc.titleCNN-based cognitive radar array selectionen_US
dc.typeConference Objecten_US

Dosyalar