Stock Market Prediction with Deep Learning Using Financial News

dc.contributor.authorGündüz, Hakan
dc.contributor.authorYaslan, Yusuf
dc.contributor.authorÇataltepe, Zehra
dc.date.accessioned2020-04-30T23:32:14Z
dc.date.available2020-04-30T23:32:14Z
dc.date.issued2018
dc.departmentDÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description26th IEEE Signal Processing and Communications Applications Conference (SIU) -- MAY 02-05, 2018 -- Izmir, TURKEYen_US
dc.descriptionWOS: 000511448500469en_US
dc.description.abstractIn this study, the hourly movement directions of 9 banking stocks in Borsa Istanbul were predicted using Long-Short Term Memory(LSTM) networks with features obtained from financial news. In the feature creation phase, the word embedding referred as Fasttext, and the financial sentiment dictionary were utilized. Class labels indicating the movement direction were computed based on hourly close prices of the stocks and they were aligned with obtained feature vectors. Two different LSTM networks were trained to perform the prediction, and the performance of the classification process was evaluated by the Macro Averaged (M.A) F-Measure. In the experiments, the movement directions of the 9 stocks were predicted with an average M.A F-measure rate of 0.540. Although the results of both LSTM networks were higher than the Random and Naive benchmark methods, the use of Attention Mechanism in the second LSTM network did not positively affect the results.en_US
dc.description.sponsorshipIEEE, Huawei, Aselsan, NETAS, IEEE Turkey Sect, IEEE Signal Proc Soc, IEEE Commun Soc, ViSRATEK, Adresgezgini, Rohde & Schwarz, Integrated Syst & Syst Design, Atilim Univ, Havelsan, Izmir Katip Celebi Univen_US
dc.identifier.isbn978-1-5386-1501-0
dc.identifier.issn2165-0608
dc.identifier.urihttps://hdl.handle.net/20.500.12684/4654
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isotren_US
dc.publisherIeeeen_US
dc.relation.ispartof2018 26Th Signal Processing And Communications Applications Conference (Siu)en_US
dc.relation.ispartofseriesSignal Processing and Communications Applications Conference
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectdeep learningen_US
dc.subjectstock market movement predictionen_US
dc.subjectBorsa Istanbul(BIST)en_US
dc.subjectLong-Short Term Memory(LSTM)en_US
dc.subjectword embeddingen_US
dc.subjectFasttexten_US
dc.titleStock Market Prediction with Deep Learning Using Financial Newsen_US
dc.typeConference Objecten_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
4654.pdf
Boyut:
196.53 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text