Modeling for prediction of surface roughness in milling medium density fiberboard with a parallel robot

Yükleniyor...
Küçük Resim

Tarih

2019

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Emerald Group Publishing Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Purpose This paper aims to discuss the utilization of artificial neural networks (ANNs) and multiple regression method for estimating surface roughness in milling medium density fiberboard (MDF) material with a parallel robot. Design/methodology/approach In ANN modeling, performance parameters such as root mean square error, mean error percentage, mean square error and correlation coefficients (R-2) for the experimental data were determined based on conjugate gradient back propagation, Levenberg-Marquardt (LM), resilient back propagation, scaled conjugate gradient and quasi-Newton back propagation feed forward back propagation training algorithm with logistic transfer function. Findings In the ANN architecture established for the surface roughness (Ra), three neurons [cutting speed (V), feed rate (f) and depth of cut (a)] were contained in the input layer, five neurons were included in its hidden layer and one neuron was contained in the output layer (3-5-1).Trials showed that LM learning algorithm was the best learning algorithm for the surface roughness. The ANN model obtained with the LM learning algorithm yielded estimation training values R-2 (97.5 per cent) and testing values R-2 (99 per cent). The R-2 for multiple regressions was obtained as 96.1 per cent. Originality/value The result of the surface roughness estimation model showed that the equation obtained from the multiple regressions with quadratic model had an acceptable estimation capacity. The ANN model showed a more dependable estimation when compared with the multiple regression models. Hereby, these models can be used to effectively control the milling process to reach a satisfactory surface quality.

Açıklama

WOS: 000482447100011

Anahtar Kelimeler

Milling, Artificial neural network, Surface roughness, Multiple regression

Kaynak

Sensor Review

WoS Q Değeri

Q4

Scopus Q Değeri

Cilt

39

Sayı

5

Künye