THE INTEGER SEQUENCE B = B-n(P, Q) WITH PARAMETERS P AND Q
dc.contributor.author | Kocapınar, Canan | |
dc.contributor.author | Özkoç, Arzu | |
dc.contributor.author | Tekcan, Ahmet | |
dc.date.accessioned | 2020-04-30T23:33:53Z | |
dc.date.available | 2020-04-30T23:33:53Z | |
dc.date.issued | 2015 | |
dc.department | DÜ, Fen-Edebiyat Fakültesi, Matematik Bölümü | en_US |
dc.description | WOS: 000357759400016 | en_US |
dc.description.abstract | In this work, we first prove that every prime number p equivalent to 1 (mod 4) can be written of the form P-2-4Q with two positive integers P and Q, and then we define the sequence B-n(P, Q) to be B-0 = 2, B-1 = P and B-n = P Bn-1 - QB(n-2) for n >= 2 and derive some algebraic identities on it. Also we formulate the limit of cross ratio for four consecutive numbers B-n, Bn+1, Bn+2 and Bn+3. | en_US |
dc.identifier.endpage | 200 | en_US |
dc.identifier.issn | 0381-7032 | |
dc.identifier.startpage | 187 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12684/5062 | |
dc.identifier.volume | 121 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.language.iso | en | en_US |
dc.publisher | Charles Babbage Res Ctr | en_US |
dc.relation.ispartof | Ars Combinatoria | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Fibonacci | en_US |
dc.subject | Lucas | en_US |
dc.subject | Pell numbers | en_US |
dc.subject | Binet's formula | en_US |
dc.subject | cross-ratio | en_US |
dc.title | THE INTEGER SEQUENCE B = B-n(P, Q) WITH PARAMETERS P AND Q | en_US |
dc.type | Article | en_US |