Improvement of antibacterial and biocompatibility properties of electrospray biopolymer films by ZnO and MCM-41
Yükleniyor...
Dosyalar
Tarih
2019
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer Verlag
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
This study aims the improvement of antibacterial and biocompatibility properties of electrospray ternary blends of chitosan/poly(ethylene glycol)/hyaluronic acid. It conserves microscale particle structure even after incorporating zinc oxide (ZnO), the zeolite Mobil Composition of Matter No. 41 (MCM41) and penicillin G during this technique. Three different electrospray (ESP) blend compositions (ESPI, ESPII and ESPIII) have been produced in order to improve both antibacterial activity against to both gram-positive and gram-negative bacteria and biocompatibility. Results of FTIR spectroscopy and microscopy verified with SEM, EDS and AFM analyses. Hyaluronic acid surface has been specified definitely through ZnO-based ESPI surface composed of heterogeneously dispersed microparticles. Surface structures of ESPII and ESPIII have more homogenously dispersed microparticles as hill–valley surface by the aid of MCM 41-PEN. Antibacterial activity has been performed by Kirby–Bauer method. ESPI has good antibacterial activity against both gram-positive (S. aureus and S. epidermidis) and gram-negative bacteria (E. cloacea). Each electrospray film displayed good biocompatibility against to mouse fibroblast cell line L929 (ATTC number CCL-1). The highest amount of cell proliferation has been detected on ESPIII surface. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.
Açıklama
Anahtar Kelimeler
Electrospray; HA; MCM 41; Microparticles; ZnO
Kaynak
Polymer Bulletin
WoS Q Değeri
Scopus Q Değeri
N/A