ON THE GOTTLIEB POLYNOMIALS IN SEVERAL VARIABLES
dc.contributor.author | Duman, Esra Erkuş | |
dc.contributor.author | Özmen, Nejla | |
dc.date.accessioned | 2020-04-30T23:20:07Z | |
dc.date.available | 2020-04-30T23:20:07Z | |
dc.date.issued | 2019 | |
dc.department | DÜ, Fen-Edebiyat Fakültesi, Matematik Bölümü | en_US |
dc.description | WOS: 000504030500009 | en_US |
dc.description.abstract | In this study, we give some new properties of the Gottlieb polynomials in several variables. The results obtained here include various families of multilinear and multilateral generating functions, integral representation and recurrence relations for these polynomials. In addition, we derive a theorem giving certain families of bilateral generating functions for the multivariable Gottlieb polynomials and the generalized Lauricella functions. Finally, we get several results of this theorem. | en_US |
dc.identifier.doi | 10.22190/FUMI1905927E | en_US |
dc.identifier.endpage | 940 | en_US |
dc.identifier.issn | 0352-9665 | |
dc.identifier.issn | 2406-047X | |
dc.identifier.issue | 5 | en_US |
dc.identifier.startpage | 927 | en_US |
dc.identifier.uri | https://doi.org/10.22190/FUMI1905927E | |
dc.identifier.uri | https://hdl.handle.net/20.500.12684/3938 | |
dc.identifier.volume | 34 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.language.iso | en | en_US |
dc.publisher | Univ Nis | en_US |
dc.relation.ispartof | Facta Universitatis-Series Mathematics And Informatics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Gottlieb polynomials | en_US |
dc.subject | generalized Lauricella functions | en_US |
dc.subject | generating functions | en_US |
dc.subject | integral representation | en_US |
dc.subject | recurrence relation | en_US |
dc.title | ON THE GOTTLIEB POLYNOMIALS IN SEVERAL VARIABLES | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- 3938.pdf
- Boyut:
- 254.02 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text