Generalized Padovan Pauli Quaternions

dc.contributor.authorIsbilir, Zehra
dc.contributor.authorDoğan Yazıcı, Bahar
dc.contributor.authorTosun, Murat
dc.date.accessioned2025-10-11T20:45:19Z
dc.date.available2025-10-11T20:45:19Z
dc.date.issued2025
dc.departmentDüzce Üniversitesien_US
dc.description.abstractThe main purpose of this study is to construct a new type special number system which is defined as generalized Padovan Pauli quaternion with non-negative and negative subscripts. Furthermore, we give some special cases with respect to the initial values and examine them, as well. We obtain not only new equations but also recurrence relations, Binet formulas, generating functions, exponential generating functions, summation formulas, and special determinant equalities with a numerical example regarding this new number system. After all, we construct algorithms for calculating the generalized Padovan Pauli quaternions with non-negative and negative subscripts. Then, we present the R-linear transformation of this new type special Pauli quaternions. © 2025 Elsevier B.V., All rights reserved.en_US
dc.identifier.doi10.1007/978-3-031-43506-5_11
dc.identifier.endpage228en_US
dc.identifier.isbn9783319432700
dc.identifier.issn2198-4190
dc.identifier.issn2198-4182
dc.identifier.scopus2-s2.0-105008232211en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage207en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-031-43506-5_11
dc.identifier.urihttps://hdl.handle.net/20.500.12684/21261
dc.identifier.volume505en_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofStudies in Systems, Decision and Controlen_US
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmzKA_Scopus_20250911
dc.subjectGeneralized Padovan Numbersen_US
dc.subjectPauli Quaternionsen_US
dc.titleGeneralized Padovan Pauli Quaternionsen_US
dc.typeBook Parten_US

Dosyalar