A combinatorial discussion on ?nit edimensional Leavitt path algebras

Yükleniyor...
Küçük Resim

Tarih

2014

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Any finite dimensional semisimple algebra A over a field K is isomorphicto a direct sum of finite dimensional full matrix rings over suitabledivision rings. We shall consider the direct sum of finite dimensionalfull matrix rings over a fieldK:All such finite dimensional semisimplealgebras arise as finite dimensional Leavitt path algebras. For thisspecific finite dimensional semisimple algebraAover a fieldK;we definea uniquely determined specific graph - called a truncated tree associatedwithA- whose Leavitt path algebra is isomorphic toA. We define analgebraic invariant (A)forAand count the number of isomorphismclasses of Leavitt path algebras with the same fixed value of (A).Moreover, we find the maximum and the minimumK-dimensions of theLeavitt path algebras of possible trees with a given number of verticesand we also determine the number of distinct Leavitt path algebras ofline graphs with a given number of vertices.

Açıklama

Anahtar Kelimeler

İstatistik ve Olasılık, Matematik

Kaynak

WoS Q Değeri

Scopus Q Değeri

Cilt

43

Sayı

6

Künye