Ağ Trafiğinin Akış Tabanlı Sınıflandırılmasında Akış Sürelerinin Makine Öğrenimi Algoritmalarına Etkisi

Küçük Resim Yok

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Osman SAĞDIÇ

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Günümüzde ağ trafiği verilerinin kontrol altında olması önemli bir gerekliliktir. Ağ operasyonlarının başarısı, belirlenen hedeflere yönelik ağ trafiği sınıflandırılmasının doğru ve performanslı bir şe kilde gerçekleştirilmesine bağlıdır. Ağ trafiği sınıflandırılmasında sıklıkla istatiksel bir yaklaşım olan akış tabanlı yöntemler kullanılmaktadır. Bu çalışmada, farklı akış sürelerinde oluşan ağ akışlarının makine öğrenimi algoritmaları üzerindeki etkileri incelemiştir. AdaBoost, DecisionTree ve RandomForest makine öğrenmesi algoritmalarının ağ trafiği sınıflandırılmasında akış tabanlı yöntem ile farklı akış sürelerinde sınıflandırma performansları analiz edilmiştir. Elde edilen sonuçlara göre makine öğrenmesi algoritmalarının ağ akışı süresinden önemli ölçüde etkilendikleri tespit edilmiştir.
Today, it is an important requirement to have network traffic data under control. The success of network operations depends on the accurate and performance classification of network traffic for the determined targets. Flow-based methods, which are a statistical approach, are often used in network traffic classification. In this study, the effects of network flows occurring at different flow times on machine learning algorithms are examined. The classification performances of AdaBoost, DecisionTree and RandomForest machine learning algorithms at different flow times have been analyzed with the flow-based method in network traffic classification. According to the results obtained, it has been determined that machine learning algorithms are significantly affected by the network flow time.

Açıklama

Anahtar Kelimeler

Ağ trafiği sınıflandırılması|Akış tabanlı yöntem|Makine öğrenmesi.|Network traffic classification|Flow-based method|Machine learning

Kaynak

Avrupa Bilim ve Teknoloji Dergisi

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

36

Künye