New Perspectives on Fractional Milne-Type Inequalities: Insights from Twice-Differentiable Functions

dc.authorscopusid58093129100en_US
dc.authorscopusid57038541500en_US
dc.authorscopusid57208224500en_US
dc.contributor.authorDesta, H.D.
dc.contributor.authorBudak, H.
dc.contributor.authorKara, H.
dc.date.accessioned2024-08-23T16:07:28Z
dc.date.available2024-08-23T16:07:28Z
dc.date.issued2024en_US
dc.departmentDüzce Üniversitesien_US
dc.description.abstractThis paper delves into an inquiry that centers on the exploration of fractional adaptations of Milne-type inequalities by employing the framework of twice-differentiable convex mappings. Leveraging the fundamental tenets of convexity, Hölder’s inequality, and the power-mean inequality, a series of novel inequalities are deduced. These newly acquired inequalities are fortified through insightful illustrative examples, bolstered by rigorous proofs. Furthermore, to lend visual validation, graphical representations are meticulously crafted for the showcased examples. © 2024, Emrah Evren KARA. All rights reserved.en_US
dc.identifier.doi10.32323/ujma.1397051
dc.identifier.endpage37en_US
dc.identifier.issn2619-9653
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85188334711en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage30en_US
dc.identifier.urihttps://doi.org/10.32323/ujma.1397051
dc.identifier.urihttps://hdl.handle.net/20.500.12684/14653
dc.identifier.volume7en_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherEmrah Evren KARAen_US
dc.relation.ispartofUniversal Journal of Mathematics and Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectConvex functionen_US
dc.subjectFractional integralsen_US
dc.subjectMilne type inequalitiesen_US
dc.subjectTwice differentiableen_US
dc.titleNew Perspectives on Fractional Milne-Type Inequalities: Insights from Twice-Differentiable Functionsen_US
dc.typeArticleen_US

Dosyalar