Kötücül URL Tespitinde Yapay Zekâ Modeli Geliştirme ve Değerlendirilmesi

Küçük Resim Yok

Tarih

2023

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Osman SAĞDIÇ

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Günümüzde internetin her geçen yıl kullanımın artmasıyla hayatımızda çok önemli bir hale gelmiş ve yeni iletişim teknolojileri, sosyal ağlar, e-ticaret, çevrimiçi bankacılık dâhil olmak üzere birçok uygulamada işlerin teşvik edilmesinde ve büyütülmesinde önemli bir etkiye sahiptir. Yaptığımız çalışmada, kullandığımız yapay zekâ modeli ile zararlı URL adreslerini tespitinde büyük bir veri seti ile çalışılması ve en iyi sonucu elde etmek hedeflenmiştir. Çalışmada 7 katmanlı RNN modeli kullanılmış, modelde çalıştırmak üzere ulusal ve uluslararası birbirine benzer iki adet veri seti birleştirilmiş, 579.112 adet URL adresinden oluşan devasa bir yeni veri seti oluşturulmuştur. Daha sonra bu yeni veri seti eğitim ve test setlerine ayrılmıştır. İlk olarak veri setimiz modelde eğitilmiş ve ardından ikinci veri seti test edilmiştir. Bu veri seti modelimizde işlendiğinde %91'in üzerinde bir başarı oranı elde edilmiştir. Bu oran zararlı url adreslerini tespit etmesinde çok iyi bir sonuçtur. Bu çalışmamızla, internet kullanımı arttıkça zararlı sitelerin tespiti için daha etkin yöntemlerin geliştirilmesine önemli katkı sağlamakta, yapay zeka modellerinin paralel kullanımı bu tür sitelerin tespitini daha kolay hale getirmekte olup ve potansiyel olarak kullanıcıların çeşitli siber saldırı türlerinden korunmalarına yardımcı olması hedeflenmektedir.
Today, the increased use of the internet has become important in our lives and new communication technologies, social networks, e-commerce, online banking, and among other applications have a significant impact on the promotion and growth of business. In our study, we aimed to work with a large dataset and to achieve the best results in detecting malicious URL addresses using an artificial intelligence model. A 7-layer RNN model was used in the study, and two similar national and international datasets were combined and merged to create a big new dataset consisting of 579,112 URL addresses. Then, this new data set is divided into training and test sets. first data set was trained at the model and then the second data set was processed test. When this data set was processed in our model, we achieved a success rate of over 91%. This rate is a very good result of detecting malicious url addresses. Your contribution with this work is significant in developing more effective methods for detecting harmful sites as internet usage increases, parallel use of artificial intelligence models makes detection of such sites more effective and potentially assist users in protecting from various types of cyber-attacks is targeted.

Açıklama

Anahtar Kelimeler

Kötücül URL|Siber Güvenlik|Yapay Zekâ|RNN|Doğruluk|Malicious URL|Cyber Security|Artificial Intelligence|RNN Model|Accuracy|Kötücül URL|Siber Güvenlik|Yapay Zekâ|RNN|Doğruluk

Kaynak

Avrupa Bilim ve Teknoloji Dergisi

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

47

Künye