On The Difference Sequence Space $l_p(\hat{T}^q)$

dc.contributor.authorİlkhan, Merve
dc.contributor.authorAlp, Pınar Zengin
dc.date.accessioned2025-03-24T19:48:33Z
dc.date.available2025-03-24T19:48:33Z
dc.date.issued2019
dc.departmentDüzce Üniversitesi
dc.description.abstractIn this study, we introduce a new matrix $\hat{T}^q=(\hat{t}^q_{nk})$ by\[\hat{t}^q_{nk}=\left \{\begin{array}[c]{ccl}%\frac{q_n}{Q_n} t_n & , & k=n\\\frac{q_k}{Q_n}t_k-\frac{q_{k+1}}{Q_n} \frac{1}{t_{k+1}} & , & k<n\\0 & , & k>n .\end{array}\right.\] where $t_k>0$ for all $n\in\mathbb{N}$ and $(t_n)\in c\backslash c_0$. By using the matrix $\hat{T}^q$, we introduce the sequence space $\ell_p(\hat{T}^q)$ for $1\leq p\leq\infty$. In addition, we give some theorems on inclusion relations associated with $\ell_p(\hat{T}^q)$ and find the $\alpha$-, $\beta$-, $\gamma$- duals of this space. Lastly, we analyze the necessary and sufficient conditions for an infinite matrix to be in the classes $(\ell_p(\hat{T}^q),\lambda)$ or $(\lambda,\ell_p(\hat{T}^q))$, where $\lambda\in\{\ell_1,c_0,c,\ell_\infty\}$.
dc.identifier.doi10.36753/mathenot.597703
dc.identifier.endpage173
dc.identifier.issn2147-6268
dc.identifier.issue2
dc.identifier.startpage161
dc.identifier.urihttps://doi.org/10.36753/mathenot.597703
dc.identifier.urihttps://hdl.handle.net/20.500.12684/19032
dc.identifier.volume7
dc.language.isoen
dc.publisherMurat TOSUN
dc.relation.ispartofMathematical Sciences and Applications E-Notes
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_DergiPark_20250324
dc.subjectsequence spaces|matrix transformations|Schauder basis
dc.titleOn The Difference Sequence Space $l_p(\hat{T}^q)$
dc.typeArticle

Dosyalar