Effective Factor Detection in Crowdfunding Systems

dc.authorscopusid56557054300
dc.authorscopusid57205585353
dc.authorscopusid57205616621
dc.authorscopusid57225966836
dc.authorscopusid57205579603
dc.contributor.authorAtagün, E.
dc.contributor.authorKaragül Yıldız, T.
dc.contributor.authorTimuçin, T.
dc.contributor.authorGündüz, H.
dc.contributor.authorBayıroğlu, H.
dc.date.accessioned2021-12-01T18:38:56Z
dc.date.available2021-12-01T18:38:56Z
dc.date.issued2021
dc.department[Belirlenecek]en_US
dc.description.abstractCrowdfunding is a platform that brings together entrepreneurs without their own budgets and investors who do not have to be related to each other. Crowdfunding, a model that enables the entrepreneurs to get the support they need to realize their projects, is increasingly used in the world and in our country as well. This study aims to open new horizons for entrepreneurs about what they should pay attention to get support for their projects. The crowdfunding system is important to prevent wasting of potential projects that may be beneficial to the society when they are implemented due to lack of resources. The fact that the project is not expressed in a way that attracts the attention of investors makes it difficult to use the system effectively. Our study answers the question of how to use this system more effectively by applying machine learning methods on a public data set. Also, the outcome of the study is expected to benefit both entrepreneurs and investors. © 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG.en_US
dc.identifier.doi10.1007/978-3-030-79357-9_25
dc.identifier.endpage255en_US
dc.identifier.issn23674512
dc.identifier.scopus2-s2.0-85109857268en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage246en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-030-79357-9_25
dc.identifier.urihttps://hdl.handle.net/20.500.12684/9926
dc.identifier.volume76en_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofLecture Notes on Data Engineering and Communications Technologiesen_US
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCrowdfundingen_US
dc.subjectData miningen_US
dc.subjectFunding success factorsen_US
dc.subjectMachine learningen_US
dc.titleEffective Factor Detection in Crowdfunding Systemsen_US
dc.typeBook Chapteren_US

Files