A hybrid MCDM optimization for utilization of novel set of biosynthesized nanofluids on thermal performance for solar thermal collectors

dc.authorscopusid59116293100en_US
dc.authorscopusid24558709000en_US
dc.authorscopusid57195406095en_US
dc.authorscopusid57308853500en_US
dc.authorscopusid57103728800en_US
dc.authorscopusid57196825693en_US
dc.authorscopusid57202959651en_US
dc.contributor.authorKhan, F.
dc.contributor.authorKarimi, M.N.
dc.contributor.authorKhan, O.
dc.contributor.authorYadav, A.K.
dc.contributor.authorAlhodaib, A.
dc.contributor.authorGürel, A.E.
dc.contributor.authorAğbulut, Ü.
dc.date.accessioned2024-08-23T16:07:39Z
dc.date.available2024-08-23T16:07:39Z
dc.date.issued2024en_US
dc.departmentDüzce Üniversitesien_US
dc.description.abstractRecent advancements in solar technology have spurred researchers to develop a precise and cost-effective method for monitoring solar radiation across diverse environmental conditions. This study focuses on optimizing performance parameters by replacing conventional nanofluids, produced through chemical and physical processes, with biosynthesized counterparts. Biosynthesized nanoparticles, derived from biological sources like microorganisms or plants, offer a promising avenue for enhancing solar panel efficiency. Through the construction and testing of an integrated photovoltaic thermal system, varying operating parameters have been explored to maximize photovoltaic efficiency. The highest overall efficiency, reaching approximately 62 %, was achieved with biosynthesized Graphene oxide nanofluid under higher Direct Normal Irradiance (DNI) levels, while the lowest was observed with Aluminum oxide nanofluid at lower DNI values. Employing Multi-Criteria Decision methods such as Analytical Hierarchical Process (AHP) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), nanofluids were ranked based on criteria including Exergy loss, Surface temperature, Overall efficiency, and Electrical efficiency, with weights of 49.58 %, 28.43 %, 13.45 %, and 8.54 % respectively. TOPSIS prioritized Graphene Oxide as the most favorable nanofluid, followed by Copper-Oxide and Cerium-Oxide, while Aluminum-Oxide received the lowest priority in optimizing PV panel performance. © 2024 The Author(s)en_US
dc.identifier.doi10.1016/j.ijft.2024.100686
dc.identifier.issn2666-2027
dc.identifier.scopus2-s2.0-85192723197en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.urihttps://doi.org/10.1016/j.ijft.2024.100686
dc.identifier.urihttps://hdl.handle.net/20.500.12684/14755
dc.identifier.volume22en_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.relation.ispartofInternational Journal of Thermofluidsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBiosynthesis nanoparticlesen_US
dc.subjectMCDMen_US
dc.subjectNanofluidsen_US
dc.subjectSolar thermal collectorsen_US
dc.subjectThermal performanceen_US
dc.subjectAluminaen_US
dc.subjectBiochemistryen_US
dc.subjectCerium oxideen_US
dc.subjectCollector efficiencyen_US
dc.subjectCost effectivenessen_US
dc.subjectElectrical efficiencyen_US
dc.subjectEnvironmental technologyen_US
dc.subjectGrapheneen_US
dc.subjectNanofluidicsen_US
dc.subjectNanoparticlesen_US
dc.subjectSolar panelsen_US
dc.subjectBiosynthesis nanoparticleen_US
dc.subjectDirect normal irradiancesen_US
dc.subjectGraphene oxidesen_US
dc.subjectMCDMen_US
dc.subjectNanofluidsen_US
dc.subjectOptimisationsen_US
dc.subjectOverall efficiencyen_US
dc.subjectSolar thermal collectoren_US
dc.subjectTechnique for order preference by similarities to ideal solutionsen_US
dc.subjectThermal Performanceen_US
dc.subjectAluminum oxideen_US
dc.titleA hybrid MCDM optimization for utilization of novel set of biosynthesized nanofluids on thermal performance for solar thermal collectorsen_US
dc.typeArticleen_US

Dosyalar