Twenty-Five Years of Advances in Beamforming: From convex and nonconvex optimization to learning techniques
dc.authorid | Heath, Robert/0000-0002-4666-5628 | en_US |
dc.authorid | Elbir, Ahmet M./0000-0003-4060-3781 | en_US |
dc.authorid | Elbir, Ahmet M./0000-0003-4060-3781 | en_US |
dc.authorid | Vorobyov, Sergiy/0000-0001-7249-647X | en_US |
dc.authorwosid | Heath, Robert/AAY-4148-2020 | en_US |
dc.authorwosid | Vorobyov, Sergiy A./G-2478-2013 | en_US |
dc.authorwosid | Elbir, Ahmet M./X-3731-2019 | en_US |
dc.authorwosid | Elbir, Ahmet M./Q-1265-2015 | en_US |
dc.contributor.author | Elbir, Ahmet M. | |
dc.contributor.author | Mishra, Kumar Vijay | |
dc.contributor.author | Vorobyov, Sergiy A. | |
dc.contributor.author | Heath Jr, Robert W. W. | |
dc.date.accessioned | 2024-08-23T16:04:16Z | |
dc.date.available | 2024-08-23T16:04:16Z | |
dc.date.issued | 2023 | en_US |
dc.department | Düzce Üniversitesi | en_US |
dc.description.abstract | Beamforming is a signal processing technique to steer, shape, and focus an electromagnetic (EM) wave using an array of sensors toward a desired direction. It has been used in many engineering applications, such as radar, sonar, acoustics, astronomy, seismology, medical imaging, and communications. With the advent of multiantenna technologies in, say, radar and communication, there has been a great interest in designing beamformers by exploiting convex or nonconvex optimization methods. Recently, machine learning (ML) is also leveraged for obtaining attractive solutions to more complex beamforming scenarios. This article captures the evolution of beamforming in the last 25 years from convex to nonconvex optimization and optimization to learning approaches. It provides a glimpse into these important signal processing algorithms for a variety of transmit-receive architectures, propagation zones, propagation paths, and multidisciplinary applications. | en_US |
dc.description.sponsorship | U.S. National Academies of Sciences, Engineering, and Medicine via an Army Research Laboratory Harry Diamond Distinguished Fellowship | en_US |
dc.description.sponsorship | Kumar Vijay Mishra acknowledges support from the U.S. National Academies of Sciences, Engineering, and Medicine via an Army Research Laboratory Harry Diamond Distinguished Fellowship. | en_US |
dc.identifier.doi | 10.1109/MSP.2023.3262366 | |
dc.identifier.endpage | 131 | en_US |
dc.identifier.issn | 1053-5888 | |
dc.identifier.issn | 1558-0792 | |
dc.identifier.issue | 4 | en_US |
dc.identifier.startpage | 118 | en_US |
dc.identifier.uri | https://doi.org/10.1109/MSP.2023.3262366 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12684/14141 | |
dc.identifier.volume | 40 | en_US |
dc.identifier.wos | WOS:001004238400012 | en_US |
dc.identifier.wosquality | Q1 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.language.iso | en | en_US |
dc.publisher | Ieee-Inst Electrical Electronics Engineers Inc | en_US |
dc.relation.ispartof | Ieee Signal Processing Magazine | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Array signal processing | en_US |
dc.subject | Shape | en_US |
dc.subject | Sonar applications | en_US |
dc.subject | Seismology | en_US |
dc.subject | Signal processing algorithms | en_US |
dc.subject | Optimization methods | en_US |
dc.subject | Machine learning | en_US |
dc.subject | Channel Estimation | en_US |
dc.subject | Robust | en_US |
dc.subject | Signal | en_US |
dc.subject | Mismatch | en_US |
dc.subject | Design | en_US |
dc.subject | Systems | en_US |
dc.subject | Radar | en_US |
dc.title | Twenty-Five Years of Advances in Beamforming: From convex and nonconvex optimization to learning techniques | en_US |
dc.type | Article | en_US |