A Result on the 2-Distance Coloring of Planar Graphs with Girth Five
| dc.contributor.author | Aras, Elif | |
| dc.date.accessioned | 2025-10-11T20:45:34Z | |
| dc.date.available | 2025-10-11T20:45:34Z | |
| dc.date.issued | 2025 | |
| dc.department | Düzce Üniversitesi | en_US |
| dc.description.abstract | A vertex coloring of a graph G is said to be a 2-distance coloring if any two vertices at distance at most 2 from each other receive different colors, and the least number of colors for which G admits a 2-distance coloring is known as the 2-distance chromatic number of G, and denoted by χ<inf>2</inf>(G). We prove that if G is a planar graph with girth 5 and maximum degree ∆ ≥ 12, then χ<inf>2</inf>(G) ≤ ∆(G) + 5. © 2025 Elsevier B.V., All rights reserved. | en_US |
| dc.identifier.endpage | 66 | en_US |
| dc.identifier.issn | 2147-625X | |
| dc.identifier.issue | 1 | en_US |
| dc.identifier.scopus | 2-s2.0-105005397548 | en_US |
| dc.identifier.scopusquality | N/A | en_US |
| dc.identifier.startpage | 60 | en_US |
| dc.identifier.uri | https://hdl.handle.net/20.500.12684/21431 | |
| dc.identifier.volume | 13 | en_US |
| dc.indekslendigikaynak | Scopus | en_US |
| dc.institutionauthor | Aras, Elif | |
| dc.language.iso | en | en_US |
| dc.publisher | Prof. Dr. Mehmet Zeki SARIKAYA | en_US |
| dc.relation.ispartof | Konuralp Journal of Mathematics | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.snmz | KA_Scopus_20250911 | |
| dc.subject | 2-distance Coloring | en_US |
| dc.subject | Coloring | en_US |
| dc.subject | Girth | en_US |
| dc.subject | Planar Graph | en_US |
| dc.title | A Result on the 2-Distance Coloring of Planar Graphs with Girth Five | en_US |
| dc.type | Article | en_US |












