CNN-Based Cognitive Radar Array Selection

dc.contributor.authorElbir, Ahmet M.
dc.contributor.authorMishra, Kumar Vijay
dc.contributor.authorEldar, Yonina C.
dc.date.accessioned2021-12-01T18:48:50Z
dc.date.available2021-12-01T18:48:50Z
dc.date.issued2019
dc.department[Belirlenecek]en_US
dc.descriptionIEEE Radar Conference (RadarConf) -- APR 22-26, 2019 -- Boston, MAen_US
dc.description.abstractIn cognitive radar, it may be desired to select an optimal subarray from a full antenna array in each scan to reduce the cost and computational complexity. Previous works on antenna selection rely on mostly optimization or greedy search methods. In this paper, we introduce a deep learning approach for antenna selection in a cognitive radar scenario. We design a deep convolutional neural network (CNN) to select the best subarray for direction-of-arrival estimation for each scan. The CNN accepts the array covariance matrix as its input and, unlike previous works, does not require prior knowledge about the target location. The performance of the proposed CNN approach is evaluated through numerical simulations. In particular, we show that it provides more accurate results than conventional support vector machines.en_US
dc.description.sponsorshipIEEE, IEEE Boston Sect, AESSen_US
dc.description.sponsorshipEuropean Union's Horizon 2020 research and innovation programme [646804-ERC-COG-BNYQ]en_US
dc.description.sponsorshipY.C.E. was funded by the European Union's Horizon 2020 research and innovation programme under grant agreement No. 646804-ERC-COG-BNYQ.en_US
dc.identifier.isbn978-1-7281-1679-2
dc.identifier.issn1097-5764
dc.identifier.urihttps://hdl.handle.net/20.500.12684/10615
dc.identifier.wosWOS:000593953401061en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isoenen_US
dc.publisherIeeeen_US
dc.relation.ispartof2019 Ieee Radar Conference (Radarconf)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCognitive radaren_US
dc.subjectantenna selectionen_US
dc.subjectdeep learningen_US
dc.subjectconvolutional neural networksen_US
dc.subjectDoA estimationen_US
dc.subjectAntenna Selectionen_US
dc.subjectMimoen_US
dc.titleCNN-Based Cognitive Radar Array Selectionen_US
dc.typeConference Objecten_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
Ä°sim:
10615.pdf
Boyut:
298.36 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text