CNN-Based Cognitive Radar Array Selection
dc.contributor.author | Elbir, Ahmet M. | |
dc.contributor.author | Mishra, Kumar Vijay | |
dc.contributor.author | Eldar, Yonina C. | |
dc.date.accessioned | 2021-12-01T18:48:50Z | |
dc.date.available | 2021-12-01T18:48:50Z | |
dc.date.issued | 2019 | |
dc.department | [Belirlenecek] | en_US |
dc.description | IEEE Radar Conference (RadarConf) -- APR 22-26, 2019 -- Boston, MA | en_US |
dc.description.abstract | In cognitive radar, it may be desired to select an optimal subarray from a full antenna array in each scan to reduce the cost and computational complexity. Previous works on antenna selection rely on mostly optimization or greedy search methods. In this paper, we introduce a deep learning approach for antenna selection in a cognitive radar scenario. We design a deep convolutional neural network (CNN) to select the best subarray for direction-of-arrival estimation for each scan. The CNN accepts the array covariance matrix as its input and, unlike previous works, does not require prior knowledge about the target location. The performance of the proposed CNN approach is evaluated through numerical simulations. In particular, we show that it provides more accurate results than conventional support vector machines. | en_US |
dc.description.sponsorship | IEEE, IEEE Boston Sect, AESS | en_US |
dc.description.sponsorship | European Union's Horizon 2020 research and innovation programme [646804-ERC-COG-BNYQ] | en_US |
dc.description.sponsorship | Y.C.E. was funded by the European Union's Horizon 2020 research and innovation programme under grant agreement No. 646804-ERC-COG-BNYQ. | en_US |
dc.identifier.isbn | 978-1-7281-1679-2 | |
dc.identifier.issn | 1097-5764 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12684/10615 | |
dc.identifier.wos | WOS:000593953401061 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.language.iso | en | en_US |
dc.publisher | Ieee | en_US |
dc.relation.ispartof | 2019 Ieee Radar Conference (Radarconf) | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Cognitive radar | en_US |
dc.subject | antenna selection | en_US |
dc.subject | deep learning | en_US |
dc.subject | convolutional neural networks | en_US |
dc.subject | DoA estimation | en_US |
dc.subject | Antenna Selection | en_US |
dc.subject | Mimo | en_US |
dc.title | CNN-Based Cognitive Radar Array Selection | en_US |
dc.type | Conference Object | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- Ä°sim:
- 10615.pdf
- Boyut:
- 298.36 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text