Yazar "Rebholz, Leo G." seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe The analogue of grad-div stabilization in DG methods for incompressible flows: Limiting behavior and extension to tensor-product meshes(Elsevier Science Sa, 2018) Akbaş, Mine; Linke, Alexander; Rebholz, Leo G.; Schröder, Philipp W.grad-div stabilization is a classical remedy in conforming mixed finite element methods for incompressible flow problems, for mitigating velocity errors that are sometimes called poor mass conservation. Such errors arise due to the relaxation of the divergence constraint in classical mixed methods, and are excited whenever the spatial discretization has to deal with comparably large and complicated pressures. In this contribution, an analogue of grad-div stabilization for Discontinuous Galerkin methods is studied. Here, the key is the penalization of the jumps of the normal velocities over facets of the triangulation, which controls the measure-valued part of the distributional divergence of the discrete velocity solution. Our contribution is twofold: first, we characterize the limit for arbitrarily large penalization parameters, which shows that the stabilized nonconforming Discontinuous Galerkin methods remain robust and accurate in this limit; second, we extend these ideas to the case of non-simplicial meshes; here, broken grad-div stabilization must be used in addition to the normal velocity jump penalization, in order to get the desired pressure robustness effect. The analysis is performed for the Stokes equations, and more complex flows and Crouzeix-Raviart elements are considered in numerical examples that also show the relevance of the theory in practical settings. (C) 2018 Elsevier B.V. All rights reserved.Öğe High order algebraic splitting for magnetohydrodynamics simulation(Elsevier Science Bv, 2017) Akbaş, Mine; Mohebujjaman, Muhammad; Rebholz, Leo G.; Xiao, MengyingThis paper proposes, analyzes and tests high order algebraic splitting methods for magnetohydrodynamic (MHD) flows. The main idea is to apply, at each time step, Yosida-type algebraic splitting to a block saddle point problem that arises from a particular incremental formulation of MHD. By doing so, we dramatically reduce the complexity of the nonsymmetric block Schur complement by decoupling it into two Stokes-type Schur complements, each of which is symmetric positive definite and also is the same at each time step. We prove the splitting is 0(Delta t(3)) accurate, and if used together with (block-)pressure correction, is fourth order. A full analysis of the solver is given, both as a linear algebraic approximation, but also in a finite element context that uses the natural spatial norms. Numerical tests are given to illustrate the theory and show the effectiveness of the method. (C) 2017 Elsevier B.V. All rights reserved.Öğe Modular grad-div stabilization for the incompressible non-isothermal fluid flows(Elsevier Science Inc, 2021) Akbas, Mine; Rebholz, Leo G.This paper considers a modular grad-div stabilization method for approximating solutions of the time-dependent Boussinesq model of non-isothermal flows. The proposed method adds a minimally intrusive step to an existing Boussinesq code, with the key idea being that the penalization of the divergence errors, is only in the extra step (i.e. nothing is added to the original equations). The paper provides a full mathematical analysis by proving unconditional stability and optimal convergence of the methods considered. Numerical experiments confirm theoretical findings, and show that the algorithms have a similar positive effect as the usual grad-div stabilization. (C) 2020 Elsevier Inc. All rights reserved.