Yazar "Kounosu, Asuka" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Genome of the fatal tapeworm Sparganum proliferum uncovers mechanisms for cryptic life cycle and aberrant larval proliferation(Nature Research, 2021) Kikuchi, Taisei; Dayi, Mehmet; Hunt, Vicky L.; Ishiwata, Kenji; Toyoda, Atsushi; Kounosu, Asuka; Kojima, SomeiThe cryptic parasite Sparganum proliferum proliferates in humans and invades tissues and organs. Only scattered cases have been reported, but S. proliferum infection is always fatal. However, S. proliferum's phylogeny and life cycle remain enigmatic. To investigate the phylogenetic relationships between S. proliferum and other cestode species, and to examine the mechanisms underlying pathogenicity, we sequenced the entire genomes of S. proliferum and a closely related non-life-threatening tapeworm Spirometra erinaceieuropaei. Additionally, we performed larvae transcriptome analyses of S. proliferum plerocercoid to identify genes involved in asexual reproduction in the host. The genome sequences confirmed that the S. proliferum has experienced a clearly distinct evolutionary history from S. erinaceieuropaei. Moreover, we found that nonordinal extracellular matrix coordination allows asexual reproduction in the host, and loss of sexual maturity in S. proliferum are responsible for its fatal pathogenicity to humans. Our high-quality reference genome sequences should be valuable for future studies of pseudophyllidean tapeworm biology and parasitism. Kikuchi et al. sequence the genome of the fatal tapeworm Sparganum proliferum and a closely related non-life-threatening tapeworm Spirometra erinaceieuropaei, and describe its genomic features suggesting the natural history and molecular mechanisms underlying pathogenicity. Their findings indicate that nonordinal extracellular matrix coordination is important for its asexual reproduction, and suggest that loss of sexual maturity contributes to the fatal pathogenicity of S. proliferum to humans.Öğe piRNA-like small RNAs target transposable elements in a Clade IV parasitic nematode(Nature Portfolio, 2022) Suleiman, Mona; Kounosu, Asuka; Murcott, Ben; Dayı, Mehmet; Pawluk, Rebecca; Yoshida, Akemi; Viney, MarkThe small RNA (sRNA) pathways identified in the model organism Caenorhabditis elegans are not widely conserved across nematodes. For example, the PIWI pathway and PIWI-interacting RNAs (piRNAs) are involved in regulating and silencing transposable elements (TE) in most animals but have been lost in nematodes outside of the C. elegans group (Clade V), and little is known about how nematodes regulate TEs in the absence of the PIWI pathway. Here, we investigated the role of sRNAs in the Clade IV parasitic nematode Strongyloides ratti by comparing two genetically identical adult stages (the parasitic female and free-living female). We identified putative small-interfering RNAs, microRNAs and tRNA-derived sRNA fragments that are differentially expressed between the two adult stages. Two classes of sRNAs were predicted to regulate TE activity including (i) a parasite-associated class of 21-22 nt long sRNAs with a 5 ' uridine (21-22Us) and a 5 ' monophosphate, and (ii) 27 nt long sRNAs with a 5 ' guanine/adenine (27GAs) and a 5 ' modification. The 21-22Us show striking resemblance to the 21U PIWI-interacting RNAs found in C. elegans, including an AT rich upstream sequence, overlapping loci and physical clustering in the genome. Overall, we have shown that an alternative class of sRNAs compensate for the loss of piRNAs and regulate TE activity in nematodes outside of Clade V.Öğe Syntenic relationship of chromosomes in Strongyloides species and Rhabditophanes diutinus based on the chromosome-level genome assemblies(Royal Soc, 2024) Kounosu, Asuka; Sun, Simo; Maeda, Yasunobu; Dayi, Mehmet; Yoshida, Akemi; Maruyama, Haruhiko; Hunt, VickyThe Strongyloides clade, to which the parasitic nematode genus Strongyloides belongs, contains taxa with diverse lifestyles, ranging from free-living to obligate vertebrate parasites. Reproductive strategies are also diverse in this group of nematodes, employing not only sexual reproduction but also parthenogenesis, making it an attractive group to study genome adaptation to specific conditions. An in-depth understanding of genome evolution, however, has been hampered by fragmented genome assemblies. In this study, we generated chromosome-level genome assemblies for two Strongyloides species and the outgroup species Rhabditophanes diutinus using long-read sequencing and high-throughput chromosome conformation capture (Hi-C). Our synteny analyses revealed a clearer picture of chromosome evolution in this group, suggesting that a functional sex chromosome has been maintained throughout the group. We further investigated sex chromosome dynamics in the lifecycle of Strongyloides ratti and found that bivalent formation in oocytes appears to be important for male production in the mitotic parthenogenesis.This article is part of the Theo Murphy meeting issue 'Strongyloides: omics to worm-free populations'.