Yazar "Farooq, Muhammad" seçeneğine göre listele
Listeleniyor 1 - 5 / 5
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Choice of nitrogen fertilizer affects grain yield and agronomic nitrogen use efficiency of wheat cultivars(Taylor & Francis Inc, 2018) Hussain, Mubshar; Cheema, Sardar Alam; Abbas, Rana Qaisar; Ashraf, Muhammad Faizan; Shahzad, Muhammad; Farooq, Muhammad; Jabran, KhawarNitrogen use efficiency (NUE) is low in cereals especially in wheat. Different wheat cultivars may vary in NUE due to inherited biological nitrification inhibition (BNI) potential. In this study, three wheat cultivars (Punjab-2011, ARRI-2011 and Millat-2011) were fertilized at the rate of 140kg ha(-1) with three N sources [nitrophos (NP), urea and calcium ammonium nitrate (CAN)]. The soil nitrate (NO3-)-N contents were significantly enhanced coupled with simultaneous decrease in ammonium (NH4+)-N contents in the rhizosphere of cultivar Punjab-2011, fertilized with NP; however, cultivar Millat-2011 receiving urea behaved in contrast. Wheat cultivar Punjab-2011 fertilized with NP had the highest grain yield and agronomic NUE than other treatments due to significant increase in chlorophyl contents, allometric and yield parameters. The highest net benefit was recorded from the cultivar Punjab-2011 fertilized with CAN. In conclusion, use of NP in Punjab-2011 enhanced the grain yield and agronomic NUE.Öğe Economic assessment of conventional and conservation tillage practices in different wheat-based cropping systems of Punjab, Pakistan(Springer Heidelberg, 2017) Shahzad, Muhammad; Hussain, Mubshar; Farooq, Muhammad; Farooq, Shahid; Jabran, Khawar; Nawaz, AhmadWheat productivity and profitability is low under conventional tillage systems as they increase the production cost, soil compaction, and the weed infestation. Conservation tillage could be a pragmatic option to sustain the wheat productivity and enhance the profitability on long term basis. This study was aimed to evaluate the economics of different wheat-based cropping systems viz. fallow-wheat, rice-wheat, cotton-wheat, mung bean-wheat, and sorghum-wheat, with zero tillage, conventional tillage, deep tillage, bed sowing (60/30 cm beds and four rows), and bed sowing (90/45 cm beds and six rows). Results indicated that the bed sown wheat had the maximum production cost than other tillage systems. Although both bed sowing treatments incurred the highest production cost, they generated the highest net benefits and benefit: cost ratio (BCR). Rice-wheat cropping system with bed sown wheat (90/45 cm beds with six rows) had the highest net income (4129.7 US$ ha(-1)), BCR (2.87), and marginal rate of return compared with rest of the cropping systems. In contrast, fallow-wheat cropping system incurred the lowest input cost, but had the least economic return. In crux, rice-wheat cropping system with bed sown wheat (90/45 cm beds with six rows) was the best option for getting the higher economic returns. Moreover, double cropping systems within a year are more profitable than sole planting of wheat under all tillage practices.Öğe Impact of different crop rotations and tillage systems on weed infestation and productivity of bread wheat(Elsevier Sci Ltd, 2016) Shahzad, Muhammad; Farooq, Muhammad; Jabran, Khawar; Hussain, MubsharCrop rotation and tillage systems have important implications for weed infestation and crop productivity. In this study, five tillage systems viz. zero tillage (ZT), conventional tillage (CT), deep tillage (DT), bed sowing (60/30 cm with four rows; BS1) and bed sowing (90/45 cm with six rows; BS2) were evaluated in five different crop rotations viz. fallow-wheat (FW), rice-wheat (RW), cotton-wheat (CW), mungbean-wheat (MW) and sorghum-wheat (SW) for their effect on weed infestation and productivity of bread wheat. Interaction between different tillage practices and cropping systems had significant effect on density and dry biomass of total, broadleaved and grass weeds, agronomic and yield-related traits, and grain yield of bread wheat. The un-disturbed soils (ZT) under fallow-wheat or mungbean-wheat rotations favoured the weed prevalence (a total weed dry biomass of 72.4-109.6 and 105.6-112.1 g m(-2) in first and second year, respectively). Contrary to this, the disturbed soils (CT, DT, BSI and BS2) had less weed infestation with either of the rotations (a total weed biomass of 0.4-7.1 and 1.1-5.4 g m(-2) in first and second year, respectively). Sorghum-wheat rotation had strong suppressive effect on weed infestation in all tillage systems. The impact of crop rotation was more visible during second year of experimentation. Bed sown wheat (BS1 and BS2) in mungbean-wheat rotation had the highest wheat grain yield (6.30-6.47 t ha(-1)) compared to other tillage systems in different crop rotation combinations. (C) 2016 Elsevier Ltd. All rights reserved.Öğe Influence of Nitrogen Fertilization Pattern on Productivity, Nitrogen Use Efficiencies, and Profitability in Different Rice Production Systems(Springer International Publishing Ag, 2021) Ishfaq, Muhammad; Akbar, Nadeem; Zulfiqar, Usman; Ali, Nauman; Jabran, Khawar; Nawaz, Mohsin; Farooq, MuhammadThe major challenge in sustainable rice production is to achieve the goals of increasing crop productivity, profitability, and resource use efficiency. Production systems (PS) and nitrogen (N) management patterns are two key agronomic practices influencing crop performance, profitability, water use efficiency (WUE), and N use efficiency (NUE). So, this study was conducted to check the influence of split application of N on rice productivity, NUE and profitability under dry direct-seeded rice (DDSR) and transplanted rice (TPR) systems. A field study was conducted in the summer season of 2017 and 2018 to investigate the influence of two PS (dry direct-seeded rice = DDSR and transplanted rice = TPR) and six N management treatments (N-1 = control, N-2 = 50 kg N ha(-1) as basal, N-3 = 100 kg N ha(-1) as basal, N-4 = 150 kg N ha(-1) as basal, N-5 = 100 kg N ha(-1) in three splits and N-6 = 150 kg N ha(-1) in three splits) on crop productivity, profitability, and resource use efficiency. Yield-related traits, spikelet sterility, WUE, and profitability aspects were significantly influenced by PS. All aspects of crop performance, kernel quality, N uptake, and NUE (except NUE on biomass basis = NUEB) were affected by N management pattern, while no significant interaction between PS and N management was observed for any aspect. On average, DDSR improved the productive tiller density (26%), biological yield (16%), WUE (14%), and NUEB (27%) as compared with TPR. Similarly, DDSR reduced the cost of production (31-43%), while maintaining statistically similar paddy yields and reducing total water inputs (5-17%) in comparison with TPR. Among N management pattern, 100 kg N ha(-1) in three splits increased paddy yields (44%), and WUE (42%) as compared with the basal application of 100 kg N ha(-1). Similarly, application of N at 100 kg ha(-1) in three splits improved the total N uptake (42%), agronomic NUE (146%), apparent recovery efficiency (226%) while reducing the spikelet sterility (28%) as compared with the basal application of 100 kg N ha(-1). The DDSR has the potential to maintain or increase yield, WUE, NUE, and economic returns. While, split application of N at 100 kg ha(-1) either in DDSR or TPR not only increased the SPAD-chlorophyll value, WUE, NUE, and economic returns but also reduced the spikelet sterility.Öğe Transplanting improves the allometry and fiber quality of Bt cotton in cotton-wheat cropping system(Cambridge University Press, 2019) Shah, M.A.; Hussain, Mubshar; Shahzad, Muhammad; Jabran, Khawar; Ul-Allah, S.; Farooq, MuhammadIn cotton-wheat cropping system of Pakistan, wheat (Triticum aestivum L.) is harvested in late April; however, the optimum sowing time of Bt cotton is mid-March. This indicates a time difference of 4-6 weeks between the harvest of wheat and cotton sowing. It is hypothesized that this overlapping period may be managed by transplanting cotton seedlings (30-45 days old) in late April, after the harvest of wheat due to better performance of already established seedlings. To this end, this study was conducted to evaluate the allometric traits and fiber quality of transplanted Bt cotton after harvesting wheat in the cotton-wheat cropping system. The Bt cotton-wheat cropping systems were flat sown wheat (FSW)-conventionally tilled cotton, FSW-zero tilled cotton, ridge sown wheat-ridge transplanted cotton using 30- and 45-days-old seedlings, and bed sown wheat (BSW)-bed transplanted cotton (BTC) also using 30- and 45-days-old seedlings. The study was conducted at Vehari and Multan in Punjab, Pakistan. Bt cotton in BSW-BTC with 45-days-old seedlings showed better performance for allometric (leaf area index; (LAI), net assimilation rate; (NAR), and crop growth rate; (CGR)), seed cotton yield, and fiber traits (fiber uniformity, fiber length, fiber strength, and fiber fineness) in comparison to other treatments. Most of the fiber quality traits were positively correlated with allometric traits and biological yield (dry matter yield at maturity) at both locations, except correlations of CGR and LAI with fiber fineness and fiber length and NAR with fiber length. As plant growth and fiber quality of transplanted cotton was significantly higher than conventionally grown cotton, our data indicate transplanting is an interesting management practice for improving productivity in wheat-cotton cropping systems. © Cambridge University Press 2019.