Yazar "Coskun, Alaaddin" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe The Efficacy of Electrochemotherapy with Dacarbazine on Melanoma Cells(Mary Ann Liebert, Inc, 2024) Coskun, Alaaddin; Kayhan, Handan; Senturk, Fatih; Esmekaya, Meric Arda; Canseven, Ayse GulnihalElectrochemotherapy (ECT) involves locally applying electrical pulses to permeabilize cell membranes, using electroporation (EP). This process enhances the uptake of low-permeant chemotherapeutic agents, consequently amplifying their cytotoxic effects. In melanoma treatment, dacarbazine (DTIC) is a cornerstone, but it faces limitations because of poor cell membrane penetration, necessitating the use of high doses, which, in turn, leads to increased side effects. In our study, we investigated the effects of DTIC and EP, both individually and in combination, on the melanoma cell line (SK-MEL-30) as well as human dermal fibroblasts (HDF) using in vitro assays. First, the effects of different DTIC concentrations on the viability of SK-MEL-30 and HDF cells were determined, revealing that DTIC was more effective against melanoma cells at lower concentrations, whereas its cytotoxicity at 1000 mu M was similar in both cell types. Next, an ideal electric field strength of 1500 V/cm achieved a balance between permeability (84%) and melanoma cell viability (79%), paving the way for effective ECT. The combined DTIC-EP (ECT) application reduced IC50 values by 2.2-fold in SK-MEL-30 cells and 2.7-fold in HDF cells compared with DTIC alone. In conclusion, ECT not only increased DTIC's cytotoxicity against melanoma cells but also affected healthy fibroblasts. These findings emphasize the need for cautious, targeted ECT management in melanoma therapy.Öğe Enhanced Transepithelial Riboflavin Delivery Across the Cornea Using Magnetic Nanocarriers(Mary Ann Liebert, Inc, 2025) Coskun, Alaaddin; Senturk, Fatih; Turan, EylemPurpose: Keratoconus is a progressive corneal ectasia characterized by irregular astigmatism, leading to corneal scarring and decreased vision. Corneal cross-linking (CXL) is the standard treatment to halt disease progression, but its effectiveness in transepithelial (epithelium-on, epi-on) approaches is limited by the low permeability of the corneal epithelium to riboflavin (Rb). This study aimed to enhance transepithelial Rb penetration in ex vivo bovine corneas using Rb-modified tannic acid-coated superparamagnetic iron oxide nanoparticles (Rb-TA-SPIONs) under an external magnetic field.Methods: SPIONs were synthesized via co-precipitation, modified with TA and Rb, and characterized by physicochemical techniques. The average size of the Rb-TA-SPIONs was 46 +/- 5.3 nm, with a saturation magnetization of 55.9 emu/g. Ex vivo experiments involved the application of 0.1% Rb to bovine corneas, and penetration was evaluated under epi-on conditions with iontophoresis (1-5 mA, 5 min). In addition, a 0.1% Rb-containing nanocarrier solution was tested under magnetic fields of 1-300 Gauss.Results: Results showed increased Rb penetration with rising electric current density and Rb-TA-SPION penetration with stronger magnetic fields, compared with epi-on control groups. Specifically, Rb penetration increased from 0.036% (P <= 0.01) at 1 mA to 0.059% (P <= 0.001) at 5 mA in the iontophoresis group and from 0.035% (P <= 0.001) at 1 G to 0.054% (P <= 0.001) at 300 G in the magnetic group.Conclusion: These findings indicate that magnetic nanoparticle-assisted Rb delivery, guided by an external magnetic field, could improve potential CXL efficacy by enhancing Rb penetration and corneal permeability.