Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Balakrishnan, Deepanraj" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Application of modern approaches to the synthesis of biohydrogen from organic waste
    (Pergamon-Elsevier Science Ltd, 2023) Sharma, Prabhakar; Jain, Akshay; Bora, Bhaskor Jyoti; Balakrishnan, Deepanraj; Show, Pau Loke; Ramaraj, Rameshprabu; Agbulut, Umit
    Hydrogen production with the use of biological processes and renewable feedstock may be considered an economical and sustainable alternative fuel. The high calorific value and zero emission in the production of biohydrogen make it the best possible source for energy security and environmental sustainability. Solar energy, microorganisms, and feedstock such as organic waste and lignocellulosic biomasses of different feedstock are the only requirements of biohydrogen production along with specific environmental conditions for the growth of microorganisms. Hydrogen is also named as 'fuel of the future'. This study presents different pathways of biohydrogen production. Because of breakthroughs in R & D, biohydrogen has been elevated to the status of a viable biofuel for the future. However, significant problems such as the cost of preprocessing, oxygen-hypersensitive enzymes, a lack of uniform light illumination for photobiological processes, and other expenses requiring intensification process limits are faced throughout the biohydrogen production process. Despite concerns regarding nanoparticle (NP) toxicity at higher concentrations, proper NP concentrations may improve hydrogen production dramatically by dissolving the substrates for bacterial hydrogen transformation. The data-driven Machine Learning (ML) model allows for quick response approximation for fermentative biohydrogen production while accounting for non-linear interactions between input variables. Scaling up biohydrogen production for future commercial-scale applications requires combining cost-benefit evaluations and life cycle effects with machine learning. & COPY; 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

| Düzce Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Düzce Üniversitesi, Kütüphane ve Dokümantasyon Daire Başkanlığı, Düzce, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim