Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Akbudak, M. Aydin" seçeneğine göre listele

Listeleniyor 1 - 6 / 6
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Ammonium transporter 1 (AMT1) gene family in tomato (Solanum lycopersicum L.): Bioinformatics, physiological and expression analyses under drought and salt stresses
    (Academic Press Inc Elsevier Science, 2020) Filiz, Ertugrul; Akbudak, M. Aydin
    Nitrogen (N) is an essential macronutrient for plants, and mainly taken from the soil as ammonium (NH+4). It is particularly transported into the plants by AMmonium Transporters (AMTs), which are plasma membrane proteins. In the present study, genome-wide identification, physiological and expression analyses of tomato (Solanum lycopersicum L.) ammonium transporters 1 (SlAMT1) genes under drought and salt stresses were performed. Sequence analyses revealed the presence of variations in SlAMT1s at nucleotide and protein levels. While all the SlAMT1s comprise an ammonium transporter domain (PF00909), the numbers of their transmembrane helices were found to be diverse. Digital expression analyses proved that SlAMT1-3 gene had different expression patterns compared to the others, suggesting its functional diversities. The expression analyses revealed that SlAMT1 genes were 0.16 and 5.94 -fold down-regulated under drought and salt stresses, respectively. The results suggested that expression of SlAMT1 genes were adversely affected by abiotic stress conditions.
  • Küçük Resim Yok
    Öğe
    Characterization of ZmSnRK1 genes and their response to aphid feeding, drought and cold stress
    (Springer, 2024) Akbudak, M. Aydin; Yildiz, Kubra; Cetin, Durmus; Filiz, Ertugrul; Yukselbaba, Utku; Srivastava, Vibha
    The SnRK1 complex in plants regulates metabolism in response to environmental stresses and glucose depletion, for stress adaptation and energy homeostasis. Through phosphorylation of various targets, SnRK1 orchestrates intricate regulatory mechanisms involved in autophagy, nutrient remobilization, and TOR activity inhibition, showcasing its pivotal role in coordinating plant metabolism and stress responses. The present study aimed to identify members of the SnRK1 gene family in the maize genome and characterize them using bioinformatics and expression analyses under aphid feeding, drought, and cold stress. The focus of the study was to conduct a comprehensive analysis towards determining gene diversity of ZmSnRK1 genes, constructing intricate 3D structures, and identifying stress-related cis-elements. Four SnRK1 genes were identified, which were named ZmSnRK1.1, ZmSnRK1.2, ZmSnRK1.3, and ZmSnRK1.4. The SnRK1 proteins were found to have a distribution of conserved motifs; however, the distinction between monocots and dicots in the phylogenetic tree was clearly demonstrated. Analysis of the promoter region revealed that the ZmSnRK1 genes contain stress-related cis-elements. Compared to the control, ZmSnRK1.3 significantly upregulated in response to aphid feeding and cold stress, while ZmSnRK1.2 showed elevated expression under drought conditions. The expression of the other two genes under these treatments was generally unperturbed. The findings of this study are poised to establish a valuable scientific foundation for future research on the roles of the SnRK1 gene family in plants, providing valuable insights for enhancing genetic resilience to stress and optimizing yield traits.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Genes involved in mRNA surveillance are induced in Brachypodium distachyon under cadmium toxicity
    (Springer, 2021) Aksoy, Emre; Uncu, Ali Tevfik; Filiz, Ertugrul; Orman, Sule; Cetin, Durmus; Akbudak, M. Aydin
    Background Cd accumulation in plant cells results in dramatic problems including oxidative stress and inhibition of vital enzymes. It also affects mineral uptakes by disrupting membrane permeability. Interaction among Cd and other plant nutrient elements changes the nutritional contents of crops and reduces their yield. Methods and results In the present study, Cd stress in Brachypodium distachyon led to the upregulation of some heavy metal transport genes (influx or efflux) encoding cation-efflux proteins, heavy metal-associated proteins and NRAMP proteins. The Arabidopsis orthologs of the differentially expressed B. distachyon genes (DEGs) under Cd toxicity were identified, which exhibited Bradi4g26905 was an ortholog of AtALY1-2. Detailed co-expression network and gene ontology analyses found the potential involvement of the mRNA surveillance pathway in Cd tolerance in B. distachyon. These genes were shown to be downregulated by sulfur (S) deficiency. Conclusions This is the first transcriptomic study investigating the effect of Cd toxicity in B. distachyon, a model plant for genomic studies in Poaceae (Gramineae) species. The results are expected to provide valuable information for more comprehensive research related to heavy metal toxicity in plants.
  • Küçük Resim Yok
    Öğe
    Genome-wide exploration and analysis of plant stress-responsive CAMTA transcription factor genes in Brachypodium distachyon and their expression patterns under environmental challenges
    (Elsevier, 2024) Akbudak, M. Aydin; Cetin, Durmus; Filiz, Ertugrul; Srivastava, Vibha
    Calmodulin-binding transcription activators (CAMTAs) is a family of transcriptional factors, which are highly sensitive to various stressors and hormone signals. They are involved in regulating plant growth, development, stress response, and have distinct biological roles in different plant compartments. Although the gene families coding the CAMTA transcription factors have been identified and functionally characterized in many plant species, it has not been previously reported in Brachypodium distachyon, which is a model organism for genomic research in cereals and grasses. In the present study, seven novel CAMTA genes were identified in the B. distachyon genome, all of which contain the CG-1 (pfam03859) domain. Their sequence details were provided with exon numbers ranging from 10 to 13 and protein length varying from 836 to 1034 amino acid residues. All BdCAMTA proteins, except BdCAMTA1, were found to be acidic and localized to the nucleus. The BdCAMTA genes exhibit diverse responses to cold, drought, and salinity stresses, without being specific to any stress. Therefore, upcoming studies should prioritize the investigation of molecular mechanisms governing functional specificity and redundancy among individual members of CAMTA. These findings establish a valuable scientific foundation for future research concerning the roles of the CAMTA gene family in plants. (c) 2024 SAAB. Published by Elsevier B.V. All rights reserved.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Genome-wide investigation of proline transporter (ProT) gene family in tomato: Bioinformatics and expression analyses in response to drought stress
    (Elsevier France-Editions Scientifiques Medicales Elsevier, 2020) Akbudak, M. Aydin; Filiz, Ertugrul
    Proline has various functions in plants, such as growth, development and stress response to biotic and abiotic factors. Therefore, proline accumulation and transport are vital for crop production in higher quality and quantity. The present study addresses genome-wide identification and bioinformatics analyses of tomato (Solanum lycopersicum) proline transporter (ProT) genes and their expression profiles under drought stress. The analyses indicated four novel ProT genes (SlProTs) in the tomato genome and their protein lengths ranged from 439 to 452 amino acid residues. All SlProTs contained a PF01490 (transmembrane amino acid transporter protein) domain and seven exons, and they had a basic p1. The phylogeny analysis proved that monocot-dicot divergence was not present and the SlProT proteins were distinct from the ProT proteins in monocots and Arabidopsis. Based on the digital expression analysis, SlProT1 and SlProT2 genes seemed to be more active than the others in response to abiotic stress conditions. However, detected by RT-qPCR, the expression levels of all SlProT genes under drought stress were similar. The promotor analyses of SlProT genes revealed that they contained many transcription factors binding sites in cis-elements, such as MYB, Dof, Hox, bZIP, bHLH, AP2/ERF and WRKY. Finally, our findings could contribute to the understanding of SlProT genes and proline metabolism in plants.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Pathogenesis related protein-1 (PR-1) genes in tomato (Solanum lycopersicum L.): Bioinformatics analyses and expression profiles in response to drought stress
    (Academic Press Inc Elsevier Science, 2020) Akbudak, M. Aydin; Yildiz, Sukran; Filiz, Ertugrul
    The pathogenesis-related protein 1 (PR-1) gene family play important roles in the plant metabolism in response to biotic and abiotic stresses. The present study aimed genome-wide identification and bioinformatics analyses of PR-1 genes in tomato (Solanum lycopersicum L.). The analyses resulted in the identification of 13 novel SlPR-1 genes, each of which produce a protein belonging to the CAP superfamily (PF00188). The KEGG annotation analyses revealed that the SlPR-1 proteins functioned in the environmental information processing (09130). The expression patterns of the PR-1 genes and some stress-related physiological parameters were investigated in Fusarium oxysporum sensitive and tolerant tomato varieties under drought stress. The drought stress leaded upregulation of all SlPR-1 genes, reaching up to 50 folds. The results indicate that the SlPR-1 genes play active roles in response to drought. This is the first study exhibiting the expression profiles of SlPR-1 genes under an abiotic stress, drought, in tomato.

| Düzce Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Düzce Üniversitesi, Kütüphane ve Dokümantasyon Daire Başkanlığı, Düzce, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim