Eta-Ricci Solitons and Gradient Ricci Solitons On Nearly Kenmotsu Manifolds.

dc.contributor.authorAyar, Gülhan
dc.contributor.authorYıldırım, M.
dc.contributor.authorAktan, N.
dc.date.accessioned2026-01-10T13:00:40Z
dc.date.available2026-01-10T13:00:40Z
dc.date.issued2018
dc.departmentDÜ, Fen-Edebiyat Fakültesi, Matematik Bölümü
dc.description.abstractIn this paper, we study Ricci solitons and gradient Ricci solitons on nearly Kenmotsu manifolds. After giving some basic definitions, we prove that in a nearly Kenmotsu manifold, if the metric g admits a Ricci soliton (g,v, ?) and V is pointwise collinear with ? , then the manifold is an ?-Einstein manifold and, in particular, an Einstein manifold. Moreover, we show that if a nearly Kenmotsu manifold admits a compact Ricci soliton, then the manifold is Einstein. Finally, we prove that if an ?-Einstein nearly Kenmotsu manifold admits a gradient Ricci soliton, then the manifold reduces to an Einstein manifold under certain conditions.
dc.identifier.urihttps://hdl.handle.net/20.500.12684/22207
dc.language.isoen
dc.relation.ispartof1st International Conference on Mathematical and Related Sciences
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_20260110
dc.titleEta-Ricci Solitons and Gradient Ricci Solitons On Nearly Kenmotsu Manifolds.
dc.typeConference Object

Dosyalar