Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Zengin, Mustafa" seçeneğine göre listele

Listeleniyor 1 - 5 / 5
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Employing of 2-Acetylpyridine Based Chalcone as Hg2+ Sensing Material: Experimental and Theoretical Examination
    (Düzce Üniversitesi, 2022) Musatat, Ahmad Badreddin; Atahan, Alparslan; Aksu, Mecit; Zengin, Mustafa
    This study reports the evaluation of 2-acetylpyridine based chalcone structure as a useful sensing material for Hg2+ ion detection by the means of UV-visible spectroscopy. In this context, firstly, the most common twenty metal ions were treated by the chalcone structure which was synthesized from 2-acetylpyridine and 4-diphenylaminobenzaldehyde according to the known procedures. As result, the studied chalcone compound exhibited good sensing activity towards Hg2+ ion in acetonitrile/water medium with significant red-shift phenomenon. In addition, some photophysical/electronic parameters of the chalcone and its Hg2+ complex were determined experimentally and theoretically. B3LYP, PBE0 methods and SVP, TVZP, and TVZPP basis sets were used for theoretical calculations in acetonitrile media. Finally, experimental results were explained and the proposed sensing mechanism was supported via density functional theory (DFT) outputs.
  • Küçük Resim Yok
    Öğe
    Evaluation of Benzothiazole-Chalcone Hybrids: Apoptosis Induction, Docking Analysis, and Anticancer Potential in Gastric Cancer Cells
    (Springer, 2025) Kiliccioglu, Ilker; Dulger, Gorkem; Musatat, Ahmad Badreddin; Atahan, Alparslan; Caliskan, Emel; Alpay, Merve; Zengin, Mustafa
    This study investigated a series of chalcone derivatives containing benzothiazole groups (C1-7) for their antimicrobial, antioxidant, and anticancer potential against gastrointestinal cancer cell lines. The compounds showed the highest antiproliferative effect in AGS gastric cancer cells compared to HCT116 colon cancer and HepG2 hepatocellular carcinoma cells. Among the tested compounds, C3 and C4 exhibited the most potent antiproliferative effects (IC50 = 7.55 mu g/mL and 8.25 mu g/mL at 48 h, respectively), significantly outperforming Cisplatin (IC50 = 15.71 mu g/mL). Mechanistic investigations revealed that C3 and C4 induce apoptosis by upregulating caspase-3, -8, and -9, suppressing anti-apoptotic Bcl-2, and elevating pro-apoptotic Bax and p53 proteins. These compounds also impeded AGS cell migration. Antimicrobial evaluations demonstrated an effective profile against multi-drug resistant bacteria, and their effects were comparable to those of the reference antibiotic Ciprofloxacin (< 0.5 g/mL). Antifungal activity results showed that MIC values ranged from < 0.5 to 256 mg/mL. Antioxidant profiling identified C1 as the most potent antioxidant, while C3 exhibited a unique dual role as an oxidant and pro-apoptotic agent. DFT computational studies harmonized the experimental findings, with molecular docking revealing high binding affinities of C3 and C4 to apoptosis regulators Bcl-2 and survivin. ADME predictions affirmed favorable drug-likeness, with moderate solubility, optimal distribution, and synthetic feasibility. This study provides a robust framework for developing benzothiazole-chalcone hybrids as precision therapeutics, positioning C3 and C4 as promising candidates for gastric cancer therapy.
  • Küçük Resim Yok
    Öğe
    Rational design, biological and in-silico evaluation of quinoline-chalcone hybrids: A new series of antimicrobial and anticancer agents
    (Elsevier Ltd, 2026) Kiliçcioğlu, Ilker; Musatat, Ahmad Badreddin; Dülger, Görkem; Atahan, Alparslan; Dülger, Başaran; Zengin, Mustafa
    This study investigates the synthesis, antimicrobial, anticancer, and in silico properties of novel quinoline-chalcone hybrids (nQCa-l), which were synthesized and characterized. Their antimicrobial activity revealed broad-spectrum efficacy, with compound 2QC-h demonstrating superior potency compared to several standard antibiotics and antifungals. The anticancer potential was assessed against gastrointestinal system cancer cell lines (AGS, HepG2, HCT116), where 2QC-h emerged as the most potent antiproliferative agent, often surpassing oxaliplatin in efficacy, particularly in AGS gastric cancer cells. Mechanistic studies have demonstrated that 2QC-h synergistically induces apoptosis and inhibits epithelial-mesenchymal transition (EMT) in AGS cells through the intrinsic mitochondrial pathway, thereby enhancing the anticancer effect of oxaliplatin. Crucially, 2QC-h exhibited selective cytotoxicity towards gastrointestinal system cancer cells (AGS cells: 4.85 ± 0.22 µg/mL and 2.66 ± 0.58 µg/mL, HCT116 cells: 6.61 ± 0.29 µg/mL and 2.39 ± 0.57 µg/mL, and HepG2 cells: 9.14 ± 0.49 µg/mL and 6.15 ± 0.27 µg/mL for 24 h and 48 h, respectively) and minimal morphological effects on healthy HUVEC cells. Computational studies, including DFT analysis, MEP, RDG, ELF, LOL, and ALIE, provided comprehensive insights into the electronic structure, reactivity, and non-covalent interactions, elucidating the structure-activity relationships (SAR). Molecular docking simulations identified VEGFR-2 and EGFR as the preferential targets for these derivatives, with nanomolar binding affinities, which correlated strongly with experimental cytotoxic potencies. ADME highlighted favorable drug-likeness properties while identifying areas for further optimization. Overall, this research establishes quinoline-chalcone hybrids as promising multi-target therapeutic agents with significant potential for developing novel antimicrobial and anticancer drugs. © 2025 Elsevier B.V., All rights reserved.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Synthesis, characterization and electrochemical behavior of some Ni(II), Cu(II), Co(II) and Cd(II) complexes of ONS type tridentate Schiff base ligand
    (Pergamon-Elsevier Science Ltd, 2011) Durmuş, Sefa; Atahan, Alparslan; Zengin, Mustafa
    Tridentate Schiff base (H2L) ligand was synthesized via condensation of o-hydroxybenzaldehyde and 2-aminothiophenol. The metal complexes were prepared from reaction of the ligand with corresponding metal salts presence of substituted pyridine in two different solvents (MeOH or MeCN). The ligand and metal complexes were then characterized by using FTIR, TGA, H-1 NMR and C-13 NMR spectroscopies. The FTIR spectra showed that H2L was coordinated to the metal ions in tridentate manner with ONS donor sites of the azomethine N, deprotonated phenolic-OH and phenolic-SH. Furthermore, substituted pyridine was coordinated to the central metal atoms. The thermal behavior of the complexes was investigated by using TGA method and dissociations indicated that substituted pyridine and ligand were leaved from coordination. This coordination of the metal complexes was correlated by H-1 NMR and C-13 NMR. Finally, electrochemical behavior of the ligand and a Ni(II) complex were investigated. (C) 2011 Elsevier B.V. All rights reserved.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Synthesis, enzyme inhibition, and molecular docking studies of a novel chalcone series bearing benzothiazole scaffold
    (Wiley, 2023) Musatat, Ahmad Badreddin; Atahan, Alparslan; Ergün, Adem; Çıkrıkçı, Kübra; Gençer, Nahit; Arslan, Oktay; Zengin, Mustafa
    This study reports the facile synthesis of a novel series of benzothiazole-chalcones, in addition to their inhibitory profile on important metabolic enzymes including human carbonic anhydrases (hCA-I, hCA-II) and paraoxonase (PON-1). The inhibition parameters, IC50 (concentration for 50% inhibition) and Ki (dissociation constant) values, toward the title enzymes were determined for the studied compounds. As a result, IC50 values of hydratase activity were in the range 4.15-5.47 and 2.56-4.58 mu M for hCA-I and hCA-II, respectively. At the same time, IC50 values of esterase activity were in the range 24.91-104.00 and 35.25-97.00 mu M, while Ki values were in the range 14.43-59.66 and 26.65-73.34 mu M for hCA-I and hCA-II, respectively. In addition, PON-1 enzyme inhibition results showed interesting inhibitory effects, with IC50 values between 13.28 and 16.68 mu M. Finally, a comprehensive approach was established for the synthesized compounds based on theoretical calculations, which have been done using B3LYP, PBE0 theories and SVP, TVZP, TVZPP basis sets, followed by docking studies by which the outputs proved the harmonically flows with the experimental results.

| Düzce Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Düzce Üniversitesi, Kütüphane ve Dokümantasyon Daire Başkanlığı, Düzce, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim