Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Yetim, Mehmet Akif" seçeneğine göre listele

Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Bounding the chromatic number of squares of K-4-minor-free graphs
    (Elsevier Science Bv, 2019) Civan, Yusuf; Deniz, Zakir; Yetim, Mehmet Akif
    Let G be a K-4-minor-free graph with Delta(G) >= 3. We prove that if G contains no subgraph isomorphic to K-2(,r) for some r >= 1. then chi(G(2)) <= Delta(G) + r. (C) 2019 Elsevier B.V. All rights reserved.
  • Küçük Resim Yok
    Öğe
    Domination versus edge domination on claw-free graphs
    (Elsevier, 2023) Civan, Yusuf; Deniz, Zakir; Yetim, Mehmet Akif
    When G is a (finite and simple) graph, we prove that its domination number is at most its edge-domination number if G is a claw-free graph with minimum degree at least two. That generalizes an earlier result of Baste et al. (2020) on cubic claw-free graphs.(c) 2023 Elsevier B.V. All rights reserved.
  • Küçük Resim Yok
    Öğe
    Gated independence in graphs
    (Elsevier, 2024) Civan, Yusuf; Deniz, Zakir; Yetim, Mehmet Akif
    If G = ( V , E ) is a (finite and simple) graph, we call an independent set X a gated independent set in G if for each x is an element of X , there exists a neighbor y of x such that ( X \ { x } ) boolean OR{ y } is an independent set in G . We define the gated independence number gi( G ) of G to be the maximum cardinality of a gated independent set in G . We demonstrate that the gated independence number is closely related to both matching and domination parameters of graphs. We prove that the inequalities im( G ) gi( G ) m ur ( G ) hold for every graph G , where im( G ) and m ur ( G ) denote the induced and uniquely restricted matching numbers of G . On the other hand, we show that gamma i ( G ) gi( G ) and gamma p r ( G ) 2 gi( G ) for every graph G without any isolated vertex, where gamma i ( G ) and gamma p r ( G ) denote the independence and paired domination numbers. Furthermore, we provide bounds on the gated independence number involving the order, size and maximum degree. In particular, we prove that gi( G ) 5 n for every n -vertex subcubic graph G without any isolated vertex or any component isomorphic to K 3 , 3 , and gi( B ) 3 n 8 for every n -vertex connected cubic bipartite graph B . (c) 2024 Elsevier B.V. All rights reserved.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Order-Sensitive Domination in Partially Ordered Sets and Graphs
    (Springer, 2022) Civan, Yusuf; Deniz, Zakir; Yetim, Mehmet Akif
    For a (finite) partially ordered set (poset) P, we call a dominating set D in the comparability graph of P, an order-sensitive dominating set in P if either x is an element of D or else a < x < b in P for some a,b is an element of D for every element x in P which is neither maximal nor minimal, and denote by gamma(os)(P), the least size of an order-sensitive dominating set of P. For every graph G and integer k >= 2, we associate to G a graded poset P-k(G) of height k, and prove that gamma(os)(P-3(G)) = gamma(R)(G) and gamma(os)(P-4(G)) = 2 gamma(G) hold, where gamma(G) and gamma(R)(G) are the domination and Roman domination number of G respectively. Moreover, we show that the order-sensitive domination number of a poset P exactly corresponds to the biclique vertex-partition number of the associated bipartite transformation of P.

| Düzce Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Düzce Üniversitesi, Kütüphane ve Dokümantasyon Daire Başkanlığı, Düzce, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim