Yazar "Yavuz, Mustafa" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Biofilms from micro/nanocellulose of NaBH4-modified kraft pulp(Indian Acad Sciences, 2017) Tozluoğlu, Ayhan; Poyraz, Bayram; Candan, Zeki; Yavuz, Mustafa; Arslan, RecaiIndustrial applications of microfibrillated cellulose (MFC) and nanofibrillated cellulose (NFC) have been in use for some time; however, there is a need to improve the production steps and at the same time to obtain better quality products. NFC and MFC were generated from -modified kraft pulp, produced from a red gum tree plant (Eucalyptus camaldulensis). The generated NFC and MFC were characterized by high-performance liquid chromatography, Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and -nuclear magnetic resonance (NMR). Morphological and viscoelastic properties were investigated by scanning electron microscopy and rheometry, respectively. The storage moduli of biofilms produced from NFC and MFC were investigated by dynamic mechanical thermal analysis (DMTA). Both exhibited mostly identical FTIR spectra. When the spectra were compared with those of -modified kraft pulp, minor shifts were observed due to crystallinity. In NMR spectra, disordered cellulose structures were observed for both NFC and MFC, and these findings were also confirmed by differential scanning calorimetry. Rheology studies revealed that the lowest viscosity was observed with MFC. TGA results showed that NFC degraded earlier compared with -modified kraft pulp. DMTA exhibited that NFC films had about six times higher storage modulus compared with MFC.Öğe Influence of PVA and silica on chemical, thermo-mechanical and electrical properties of Celluclast-treated nanofibrillated cellulose composites(Elsevier Science Bv, 2017) Poyraz, Bayram; Tozluoğlu, Ayhan; Candan, Zeki; Demir, Ahmet; Yavuz, MustafaThis study reports on the effects of organic polyvinyl alcohol (PVA) and inorganic silica polymer on properties of Celluclast-treated nanofibrillated cellulose composites. Nanofibrillated cellulose was isolated from Eucalyptus camaldulensis and prior to high-pressure homogenizing was pretreated with Celluclast enzyme in order to lower energy consumption. Three nanocomposite films were fabricated via the casting process: nanofibrillated cellulose (CNF), nanocellulose-PVA (CNF-P)and,nanocellulose-silica (CNF-Si). Chemical characterization, crystallization and thermal stability were determined using FT-IR and TGA. Morphological alterations were monitored with SEM. The Young's and storage moduli of the nanocomposites were determined via a universal testing machine and DTMA. The real and imaginary parts of permittivity and electric modulus were evaluated using an impedance analyzer. The crystallinity values of the nanocomposites calculated from the FT-IR were in agreement with the TGA results, showing that the lowest crystallinity value was in the CNF-Si. The CNF-P displayed the highest tensile strength. At a high temperature interval, the storage modulus of the CNF-Si was greater than that of the CNF or CNF-P. The CNF-Si also exhibited a completed singular relaxation process, while the CNF and the CNF-P processes were uncompleted. Consequently, in terms of industrial applications, although the CNF-P composite had mechanical advantages, the CNF-Si composite displayed the best thermo-mechanical properties. (C) 2017 Elsevier B.V. All rights reserved.Öğe TEMPO-treated CNF Composites: Pulp and Matrix Effect(Korean Fiber Soc, 2018) Poyraz, Bayram; Tozluoğlu, Ayhan; Candan, Zeki; Demir, Ahmet; Yavuz, Mustafa; Büyüksarı, Ümit; Saka, Rasim CemThis study examined the effects of matrix (PVA and Si) on the properties of TEMPO-treated nanocomposites preparing from different pulp sources (Kraft and NaBH4 treated Kraft). Chemical characterization and crystallization were determined via FT-IR, thermal stability via TGA and morphological alterations via SEM. UTM and DTMA were used to measure the Young's and storage moduli. The real and imaginary parts of permittivity and electric modulus were evaluated using an impedance analyzer. After interaction, prominent vibrations and alteration of crystallinity were seen. Storage and Young's moduli decreased after Si and PVA interaction. The Si-TOCN films showed higher permittivity properties and all of the films followed a similar trend of significantly dropping epsilon' and epsilon'' values at high frequency. The PVA-TOCN films had mechanical advantages at room temperature compared to the Si-TOCN films. However, the Si-TOCN films had better thermomechanical properties at high temperatures. NaBH4 revealed favorable effects on mechanical properties of the films.