Yazar "Yadav, Ashok Kumar" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A hybrid RSM-GA-PSO approach on optimization of process intensification of linseed biodiesel synthesis using an ultrasonic reactor: Enhancing biodiesel properties and engine characteristics with ternary fuel blends(Pergamon-Elsevier Science Ltd, 2024) Ahmad, Aqueel; Yadav, Ashok Kumar; Singh, Achhaibar; Singh, Dinesh Kumar; Agbulut, UmitThe depletion of fossil fuels necessitates the development of sustainable and energy -efficient techniques for biodiesel production. In recent years, cavitation reactors have emerged as a viable alternative to conventional biodiesel synthesis methods due to their superior conversion rates and shorter processing times. These reactors possess a high surface -to -volume ratio and facilitate efficient heat and mass transfer. This study aims to optimize the production of biodiesel from linseed oil using a novel ultrasonic cavitation reactor through a hybrid approach. In order to achieve this, an L50 orthogonal array with five factors and three levels was developed using a Box-Behnken design based on response surface methodology (RSM). These factors included the molar ratio (4:1, 6:1, and 8:1), ultrasonic power (100, 125, and 150 W), temperature (25, 35, and 45 degrees C), time (3, 6, and 9 min), and ultrasonic frequency (25, 30, and 35 kHz). The parameters were optimized using RSM-based desirability, genetic algorithm (GA), and particle swarm optimization (PSO) approaches. The results indicated that the RSM-based optimization approach outperformed the other methods. The optimal combination of parameters obtained through RSM consisted of molar ratio of 6.58:1, ultrasonic power of 133.65 W, temperature of 37.44 degrees C, time of 7.71 min, and pulse frequency of 26.29 kHz. This combination resulted in a biodiesel yield of 95.25%. Furthermore, this study explored the impact of different linseed oil methyl ester, octanol, and diesel blends (B10, B20, B30, B10 (O-10), and B20 (O-10)) on engine performance and emission characteristics. The B20 (O-10) blend exhibited significant potential for simultaneously reducing emissions and enhancing engine performance. When used as engine fuel, the B20 (O-10) blend increased brake thermal efficiency (BTE) by 0.848%, decreased brake specific fuel consumption (BSFC) by 0.607%, and decreased CO, HC, and NOx emissions by 18.75%, 6.55%, and 0.72%, respectively, compared to pure diesel at rated power.Öğe Production of oxy-hydrogen gas and the impact of its usability on CI engine combustion, performance, and emission behaviors(Pergamon-Elsevier Science Ltd, 2023) Dewangan, Ashish; Mallick, Ashis; Yadav, Ashok Kumar; Islam, Saiful; Saleel, C. Ahamed; Shaik, Saboor; Agbulut, UmitThe greenhouse gases in the environment emitted from emissions of IC engine raises great concern for the survival of human beings, and it has a detrimental effect on the environment. There is a significant requirement to switch the energy source towards renewable as much as possible. From this viewpoint, oxy-hydrogen (HHO) gas was produced and tested in a CI engine. The HHO gas was supplied as a secondary fuel into the combustion chamber at the flow rates of 0-6 Litres/min (LPM) in the interval of 1 LPM through the intake manifold with the air along with biodiesel derived from novel feedstock Bauhinia variegate, injected at the blending percentage of 20%. The experiments were conducted at a constant crankshaft speed of 1500 rpm and varying load from 0 to 100% with intervals of 25%. The addition of biodiesel with conventional diesel fuel causes a decrease in brake thermal efficiency (BTE) and an increase in the brake-specific fuel consumption (BSFC) of the engine owing to its lower calorific value. This shortcoming has been overcome by inducting HHO gas at the intake manifold, resulting in an improved BTE and BSFC due to its high flame speed and high heating value leading to improved combustion. The result also indicates that the fuel enriched with HHO reduces significant exhaust emissions of carbon monoxide and unburned hydrocarbon except for NOx. The combustion characterization reveals that mixing HHO gas in biodiesel blends increases the peak in-cylinder gas pressure and heat release rate. The ideal flow rate of HHO was found at 3 LPM for maximum combustion, performance characteristics and minimum emissions characteristics, except NOx which continuously rises with increasing flow rate. The study reveals that the use of bauhinia variegate biodiesel in CI engines worsens the engine characteristics, but the induction of HHO gas can be a very promising renewable fuel to improve the worsening engine characteristics in terms of com-bustion, performance, and environmental issues.