Yazar "Ustaoglu, Abid" seçeneğine göre listele
Listeleniyor 1 - 7 / 7
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe 3D-printed polylactic acid-microencapsulated phase change material composites for building thermal management(Pergamon-Elsevier Science Ltd, 2024) Bayram, Muhammed; Ustaoglu, Abid; Kursuncu, Bilal; Hekimoglu, Gokhan; Sari, Ahmet; Ugur, Latif Onur; Subasi, SerkanThe integration of phase change materials (PCM) into architectural elements is an emerging strategy to enhance thermal energy storage in modern buildings. This research examines 3D-printed polylactic acid structures incorporated with microencapsulated PCM, targeting a more efficient thermoregulation in foundational architectural sections such as walls, floors, and ceilings. Through rigorous evaluations, the polylactic acid-PCM composite revealed promising thermoregulatory properties. Notably, latent heat values stood at 198.4 J/g for melting and 197.9 J/g for freezing. Real-world experiments demonstrated a distinct advantage, maintaining temperatures 3.2 degrees C-3.3 degrees C higher than standard polylactic acid at night and exhibiting a cooler range of 10.4 degrees C-13.3 degrees C during daylight. Within specific geographical contexts, like the Mediterranean and Aegean Seas coastline, 0.026 m thick polylactic acid-PCM panels stood out, registering 100 % energy savings. The findings consistently showed that an increase in panel thickness correlated with a decrease in building heating needs. Further analysis explored the carbon emissions landscape. Coal, when utilized with 0.05 m-thick polylactic acidPCM panels, was identified as particularly effective, yielding a reduction of 34 kg/m2 in annual CO2 emissions. Collectively, the findings underscore the transformative potential of polylactic acid-PCM composites, positioning them as pivotal tools for advancing architectural energy efficiency and fostering sustainable building innovations.Öğe Characterisation and energy storage performance of 3D printed-photocurable resin/microencapsulated phase change material composite(Elsevier, 2024) Er, Yusuf; Guler, Onur; Ustaoglu, Abid; Hekimoglu, Gokhan; Sari, Ahmet; Subasi, Serkan; Gencel, OsmanThe 3D fabrication of microencapsulated phase change material (MEPCM) doped resin polymer composites enables the creation of complex shapes and customized designs, opening doors for many applications in fields. This investigation fabricated a range of resin/MEPCM (20 %, 30 %, and 40 % by volume) composites using a mechanical mixing technique. This study investigates how the addition of MEPCM impacts resin matrix composite's mechanical strength, latent heat storage characteristics, and ability to regulate temperature effectively. With a 40 % MEPCM additive ratio, a pure resin porosity value of approximately 0.4 % increased to around 17 %. Thanks to the production of homogeneously dispersed MEPCM added resins with production with stereolithography (SLA), 40 % MEPCM additive enabled characteristic FTIR peaks of both MEPCM and resin to appear and, melting and solidification enthalpy values reached 87.15 j/g and 86.25 j/g, respectively. MEPCM addition enhanced the thermoregulatory properties of resin by absorbing or releasing heat during temperature fluctuations. On hotter days, 8 mm-thick composites create temperature differences exceeding 11 C, while this difference exceeds 6 C in the room center case. The produced 3D printed MEPCM/resin composite can be a potential material to effectively regulate the temperature of electronic devices, food packets, building materials, and electronic devices and automotive components.Öğe Developing Wallpaper/Dodecyl alcohol composite phase change materials as new kind of wall covering elements for building interior thermoregulation(Elsevier, 2023) Gencel, Osman; Ustaoglu, Abid; Sari, Ahmet; Hekimoglu, Gokhan; Sutcu, Mucahit; Tozluoglu, Ayhan; Tutus, AhmetThis study introduces a novel wall-covering element consisting of wallpapers (WP) impregnated with Phase Change Material (PCM), with the aim of enhancing thermal properties and providing effective thermal regulation performance in interior spaces. The study conducts practical investigations into the thermal attributes of wall-papers (WPs) impregnated with Dodecyl alcohol (DDA) as the chosen PCM, culminating in a leakage-free WP/ DDA wall covering element. The process of impregnating involved applying liquid DDA to the back side of the WP using a manual coating apparatus. Four distinct DDA ratios, ranging from 0% to 20% by mass of WP, were applied. The chemical compatibility of the developed WP/DDA composite was explored using Fourier Infrared Spectroscopy (FTIR). The thermal energy storage (TES) properties were assessed through Differential Scanning Calorimeter (DSC) analysis, and the thermo-regulative performance of the WP/DDA composite was evaluated in laboratory-scale test rooms under real weather conditions. The DSCoutcomesexposed that melting temperature and latent heat capacity of WP/DDA were 21.78 degrees C and 26.9 J/g, respectively.The thermoregulation tests showed that the prepared WP/DDAsignificantly reduce interior room temperature fluctuation and can maintain indoor temperature longer in comfortable temperature ranges. The largest difference between the reference room and test room was observed to be about 2celcius. The room temperature was cooler for about 9 h 53 min during day times for the DDA case.The results designated that the developed WP/DDA composite could be evaluated as a promising new kind of building wall covering element for reducing the cooling load of room.Öğe Enhancing sustainability with waste hemp-shive and phase change material: Novel gypsum-based composites with advanced thermal energy storage properties(Elsevier Sci Ltd, 2024) Gencel, Osman; Guler, Onur; Ustaoglu, Abid; Erdogmus, Ertugrul; Sari, Ahmet; Hekimoglu, Gokhan; Boztoprak, YalcinThis study addresses the rising demand for sustainable construction by introducing composite materials from natural and renewable resources: gypsum, hemp, and phase change materials (PCMs). These materials cater to the growing preference for eco-friendly building solutions. Incorporating hemp enhances sustainability while integrating PCMs into the porous hemp structure ensures adequate thermal energy storage and release without leakage. Firstly, the agricultural waste hemp shives and lauryl alcohol (LA) PCM were mixed to create shapestabilized hemp/PCM composites. The highest PCM ratio was determined in shape-stabilized composites exhibiting non-leakage properties, which was 45 wt %. These composites were then incorporated into gypsum materials at loadings of 7.5 %, 15 %, 22.5 %, and 35 wt % to produce the final composites. Morphological, thermal, and chemical characteristics of shape-stabilized composites were examined using SEM, TGA, and DSC, while the solar thermoregulation tests assessed the gypsum matrix composites. The phase change temperature of PCM was determined as 20.24 degrees C with a melting enthalpy value of 224.4 J/g. The hemp/PCM shape-stabilized composites demonstrated an impressive melting enthalpy value of 100.2 J/g, with only a slight reduction to 99.5 J/g after 750 test cycles. When the ambient temperature exceeded 50 degrees C, the central temperature of the cabins containing PCM composites was found to be at least 4 degrees C cooler than those containing only gypsum. Conversely, when the ambient temperature dropped to around 20 degrees C, it was observed that the central temperature of the cabins with PCM composites was approximately 2 degrees C warmer than those with only gypsum. This study introduces a novel approach to creating environmentally friendly gypsum/hemp/PCM composites for thermal energy storage systems.Öğe Microencapsulated phase change material incorporated light transmitting gypsum composite for thermal energy saving in buildings(Elsevier, 2023) Gencel, Osman; Bayram, Muhammed; Subasi, Serkan; Hekimoglu, Gokhan; Sari, Ahmet; Ustaoglu, Abid; Marasli, MuhammedThe increased energy consumption for specific applications, including heating, cooling, air conditioning and lighting of residential and commercial buildings accelerate the research efforts concentrated on developing thermal energy storage capacity of buildings materials in recent years. Likewise, the development of light-transmitting building elements is a novel energy-saving technique that enhances lighting efficiency in build-ings. In light of these, the current study seeks to design an untried microencapsulated phase change material (MPCM) integrated glass fiber reinforced gypsum composite with sufficient light-transmitting properties and thermal energy storage capacity. In this research, a multi-scale investigation of light-transmitting gypsum composite was conducted experimentally with physical, mechanical, chemical, microstructural, thermal, light transmittance and solar thermoregulation tests. The gypsum composite is formed from alpha-gypsum, water, polymer admixture, alkali-resistant glass fiber (AR-GF), several concentrations of MPCM, and plastic optical grids to allow light to transmit through the board. Although higher fractions of MPCM yielded an apparent decrease in me-chanical strength test results, 5 wt% introduction of MPCM to the reference matrix reduced the compressive and flexural strength of specimens by 1 and 8 %, respectively. The results verified a reduction trend in thermal conductivity of composites with MPCM loading. DSC investigations revealed that the melting temperature and the regarding latent heat storage capacity of gypsum composite with 15 wt% of MCPM are 17.76 degrees C and 19.2 J/g, respectively. Light-transmitting gypsum composites showed up to similar to 10 % light transmittance, that can greatly increase the efficiency of lighting in buildings. The produced gypsum composites with MPCM kept the test room cooler during the highest temperature, while it provided a warmer room during the nighttime for an extended time. The study's findings are applicable to increase thermal comfort by reducing the significant temperature variations in buildings and improving artificial lighting efficiency, encouraging the design of sustainable building applications.Öğe Physico-mechanical properties and thermal monitoring performance of thermal enhanced cement slurry-coated LWAs containing microencapsulated phase change material(Elsevier, 2024) Emiroglu, Mehmet; Ozguler, Alper Tunga; Nas, Memduh; Subasi, Serkan; Sari, Ahmet; Hekimoglu, Gokhan; Ustaoglu, AbidOver the past decade, phase change materials (PCMs) have emerged as promising solutions for thermal energy storage (TES) systems, aimed at minimizing heating and cooling energy requirements in buildings. Nevertheless, despite their potential, there are some significant challenges in effectively integrating PCMs into building components. As part of this study, lightweight aggregates (LWA) were coated with a cement slurry containing microencapsulated phase change material (MPCM) to produce lightweight concrete (LWC) with the aim of investigating its mechanical and thermal properties. The LWAs were coated with MPCM at proportions of 2.5%, 5%, and 7.5% of their weight, and an LWC-MPCM was produced using these coated aggregates. The LWC-MPCM exhibited a decrease in dry unit weight up to 1248 kg/m 3 and a reduction in thermal conductivity up to 0.60 W/ mK with negligible loss of strength. SEM examinations revealed that the cement slurry coating provided strong adhesion to the aggregates, resulting in a robust concrete-aggregate interface. The room with the LWC-MPCM experienced a decrease of approximately 0.23 degrees C in center temperature compared to the reference room during the daytime. Additionally, after sunset, the LWC-MPCM showed an increase of approximately 1 degrees C in room center temperature. These advantageous physico-mechanical and thermal properties establish LWC-MPCMs as promising and energy-efficient components for producing thermo-regulative building materials.Öğe Production and assessment of UV-cured resin coated stearyl alcohol/ expanded graphite as novel shape-stable composite phase change material for thermal energy storage(Pergamon-Elsevier Science Ltd, 2024) Guler, Onur; Er, Yusuf; Hekimoglu, Gokhan; Ustaoglu, Abid; Sari, Ahmet; Subasi, Serkan; Marasli, MuhammedExpanded graphite -phase change materials (PCM) structures are reinforced to polymers with various methods to fabricate advanced thermal energy storage materials. However, these methods still suffer from processing time and product efficiency challenges. In this study, the UV-curing method was used to produce shape-stable EGPCM-reinforced resin composites with fast curing and low process temperature of the resin. The composite material, comprising UV -curable resin (30 %), stearyl alcohol (65 %), and Expanded graphite (5 %), was synthesized. This synthesis aimed to address the limitations of traditional PCMs, such as low thermal conductivity and leakage. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to characterize the materials ' phase change behavior and thermal stability. Scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) analyses were conducted to elucidate the microstructure and crystallinity of composite materials. The composites, exhibiting near-perfect impermeability with leakage as minimal as 0.89 %, not only enable the attainment of cooler environments by 2 - 3 degrees C under hot air conditions but also demonstrate exceptional thermal stability up to 207 degrees C, as evidenced by TGA results. Additionally, they offer a remarkable melting enthalpy value of 153.1 J/g. These composites, with their shape-retention ability during phase transitions and high thermal energy storage capacity, are a versatile and efficient option for sustainable energy management. This research contributes to the development of innovative materials for renewable energy integration and reducing carbon emissions.