Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Ugras, Halil Ibrahim" seçeneğine göre listele

Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Analysis of Anticancer Taxanes in Turkish Hazelnut ( Corylus avellana L.) Genotypes Using High-Performance Liquid Chromatography
    (Galenos Publ House, 2024) Kutluturk, Gulbahar Zehra; Duvenci, Elif Sine; Karagul, Bora; Yaman, Baki; Ugras, Halil Ibrahim; Serdar, Umit; Ari, Sule
    Objectives: This study aimed to investigate the anticancer taxane profiles of edible and non-edible parts of seven Turkish hazelnut ( Corylus avellana L.) genotypes. Hazelnut is one of the healthy foods rich in nutrients and antioxidants. Its regular consumption is associated with a reduced risk of coronary heart disease and cancer. Hazelnut has been described as a plant source that produces taxanes which are widely used in many cancers. Turkiye is a homeland of hazelnut culture and has its own cultivars. Investigation of anticancer taxane profiles in different parts of Turkish hazelnut genotypes is important to show the potential and value of this plant from the perspective of the pharmaceutical and food industries. Materials and Methods: In this study, green leafy covers (GLCs) and hard shells (HSs) (non-edible parts), skinless kernels (SKs), brown-skins (BSs), and brown-skinned kernels (BSKs) (edible parts) of & Ccedil;ak & imath;ldak, Sivri, Tombul, Palaz, and Kal & imath;nkara as standard and Ham and Sivri Ya & gbreve;l & imath; as local genotypes were used. The five parts of each genotype were ground to powder and eliminated to a size of less than 80 mesh. Each part was extracted using hexane and methanol for 10-deacetylbaccatin III (10-DAB III), baccatin III (BAC III), cephalomannine, and paclitaxel analyses in three replicates. Samples and standards were analyzed by acetonitrile: water gradient method on NOVA Spher 100 Phenyl-Hexyl C18 column inhighperformance liquid chromatography reverse phase system with 228 nm ultraviolet detector and 1.0 mL/min flow rate. Microsoft Office Excel, 2016, and analysis of variance Jamovi Version 2.3 were used for statistical and data analysis, consecutively. Results: Hazelnut parts differed to a very high degree from each other in terms of the highest amount of 10- DAB III (Ham HSs, 9,15 mu g/g), BAC III (Kal & imath;nkara BSs, 7.24 mu g/g), cephalomannine (Sivri Ya & gbreve;l & imath; BSs, 6.37 mu g/g), and paclitaxel (Ham BSKs, 4.36 mu g/g) they contained. While HSs, BSKs, and BSs were rich in taxanes in all of the analyzed genotypes, SKs, and GLCs remain limited for anticancer taxanes. Conclusion: This is the first report that revealed the differences in taxane contents of Turkish hazelnuts including previously untested standard and local genotypes and their parts. Significant differences between genotype and hazelnut parts are expected to highlight the health benefits of consuming raw Turkish hazelnut with BSs and their possible use as a functional food. These results add more information to elucidate the bioactive potential of Turkish hazelnuts and their by-products and provide a promising resource for the food and pharmaceutical industry with an anticancer perspective.
  • Küçük Resim Yok
    Öğe
    Determination of the Properties of Medium-Density Fiberboards Produced Using Urea-Formaldehyde Resins Modified with Boron Compounds
    (North Carolina State Univ Dept Wood & Paper Sci, 2024) Arslan, Recai; Karacay, Ebru; Maraslioglu, Derya; Tanriverdi, Bilge Asian; Firat, Ebru; Tozluoglu, Ayhan; Ugras, Halil Ibrahim
    Effects of adding different boron compounds to the urea-formaldehyde resin were evaluated relative to the physical, mechanical, and other properties of medium-density fiberboard (MDF). While the chemical addition of boric acid to the urea-formaldehyde resin increased the modulus of rupture and modulus of elasticity values of MDF boards, the physical and chemical additions of other boron compounds decreased those values. While there were no significant decreases in internal bond values, the chemical addition of boric acid and borax decahydrate to urea-formaldehyde resin increased the internal bond values of MDF boards. It was observed that in both types of addition, borax pentahydrate reduced the formaldehyde emission values of MDF boards the most and also reduced the burnt area by up to 30%. When the type of addition of boron compounds to urea-formaldehyde was compared, the addition of boron compounds at the resin formation stage showed better results in the properties of MDF boards than physical addition.
  • Küçük Resim Yok
    Öğe
    Oxidative, Genotoxic and Cytotoxic Damage Potential of Novel Borenium and Borinium Compounds
    (Mdpi, 2023) Oguzkan, Sibel Bayil; Turkez, Hasan; Ugras, Halil Ibrahim; Tatar, Arzu; Mardinoglu, Adil
    In this study, the biological properties of novel borenium and borinium compounds in terms of their oxidative, genotoxic, and cytotoxic effects were assessed on cultured human peripheral blood cells, as well as several types of cancer cells. Our results revealed that the borinium compounds yielded the best results in terms of supporting total antioxidant capacity (TAC). In fact, borenium 1, borenium 2, borenium 3, borinium 4, and borinium 5 compounds elevated TAC levels of cultured human blood cells at rates of 42.8%, 101.5%, 69.8%, 33.3%, and 49.2%, respectively. There were no statistically significant differences (p > 0.05) between the negative control and the groups treated with all borinium and borenium concentrations from the micronucleus (MN) and chromosome aberration (CA) assays, demonstrating the non-genotoxic effects. Moreover, borenium 1 (60.7% and 50.7%), borenium 2 (70.4% and 57.2%), borenium 3 (53.1% and 45.2%), borinium 4 (55.1% and 48.1%), and borinium 5 (51.0% and 36.1%) minimized the mitomycin C(MMC)-induced genotoxic damages at different rates as determined using CA and MN assays, respectively. Again, it was found that the borinium compounds exhibited higher cytotoxic activity on cancer cells when compared to borenium compounds. Consequently, in light of our in vitro findings, it was suggested that the novel borinium and borenium compounds could be used safely in pharmacology, cosmetics, and various medical fields due to their antioxidant and non-genotoxic features, as well as their cytotoxicity potential on cancer cells.

| Düzce Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Düzce Üniversitesi, Kütüphane ve Dokümantasyon Daire Başkanlığı, Düzce, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim