Yazar "Tozluoglu, Ayhan" seçeneğine göre listele
Listeleniyor 1 - 5 / 5
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Determination of the Properties of Medium-Density Fiberboards Produced Using Urea-Formaldehyde Resins Modified with Boron Compounds(North Carolina State Univ Dept Wood & Paper Sci, 2024) Arslan, Recai; Karacay, Ebru; Maraslioglu, Derya; Tanriverdi, Bilge Asian; Firat, Ebru; Tozluoglu, Ayhan; Ugras, Halil IbrahimEffects of adding different boron compounds to the urea-formaldehyde resin were evaluated relative to the physical, mechanical, and other properties of medium-density fiberboard (MDF). While the chemical addition of boric acid to the urea-formaldehyde resin increased the modulus of rupture and modulus of elasticity values of MDF boards, the physical and chemical additions of other boron compounds decreased those values. While there were no significant decreases in internal bond values, the chemical addition of boric acid and borax decahydrate to urea-formaldehyde resin increased the internal bond values of MDF boards. It was observed that in both types of addition, borax pentahydrate reduced the formaldehyde emission values of MDF boards the most and also reduced the burnt area by up to 30%. When the type of addition of boron compounds to urea-formaldehyde was compared, the addition of boron compounds at the resin formation stage showed better results in the properties of MDF boards than physical addition.Öğe Developing Wallpaper/Dodecyl alcohol composite phase change materials as new kind of wall covering elements for building interior thermoregulation(Elsevier, 2023) Gencel, Osman; Ustaoglu, Abid; Sari, Ahmet; Hekimoglu, Gokhan; Sutcu, Mucahit; Tozluoglu, Ayhan; Tutus, AhmetThis study introduces a novel wall-covering element consisting of wallpapers (WP) impregnated with Phase Change Material (PCM), with the aim of enhancing thermal properties and providing effective thermal regulation performance in interior spaces. The study conducts practical investigations into the thermal attributes of wall-papers (WPs) impregnated with Dodecyl alcohol (DDA) as the chosen PCM, culminating in a leakage-free WP/ DDA wall covering element. The process of impregnating involved applying liquid DDA to the back side of the WP using a manual coating apparatus. Four distinct DDA ratios, ranging from 0% to 20% by mass of WP, were applied. The chemical compatibility of the developed WP/DDA composite was explored using Fourier Infrared Spectroscopy (FTIR). The thermal energy storage (TES) properties were assessed through Differential Scanning Calorimeter (DSC) analysis, and the thermo-regulative performance of the WP/DDA composite was evaluated in laboratory-scale test rooms under real weather conditions. The DSCoutcomesexposed that melting temperature and latent heat capacity of WP/DDA were 21.78 degrees C and 26.9 J/g, respectively.The thermoregulation tests showed that the prepared WP/DDAsignificantly reduce interior room temperature fluctuation and can maintain indoor temperature longer in comfortable temperature ranges. The largest difference between the reference room and test room was observed to be about 2celcius. The room temperature was cooler for about 9 h 53 min during day times for the DDA case.The results designated that the developed WP/DDA composite could be evaluated as a promising new kind of building wall covering element for reducing the cooling load of room.Öğe Lignocellulosic Bionanomaterials for Biosensor Applications(Mdpi, 2023) Durmaz, Ekrem; Sertkaya, Selva; Yilmaz, Hande; Olgun, Cagri; Ozcelik, Orhan; Tozluoglu, Ayhan; Candan, ZekiThe rapid population growth, increasing global energy demand, climate change, and excessive use of fossil fuels have adversely affected environmental management and sustainability. Furthermore, the requirements for a safer ecology and environment have necessitated the use of renewable materials, thereby solving the problem of sustainability of resources. In this perspective, lignocellulosic biomass is an attractive natural resource because of its abundance, renewability, recyclability, and low cost. The ever-increasing developments in nanotechnology have opened up new vistas in sensor fabrication such as biosensor design for electronics, communication, automobile, optical products, packaging, textile, biomedical, and tissue engineering. Due to their outstanding properties such as biodegradability, biocompatibility, non-toxicity, improved electrical and thermal conductivity, high physical and mechanical properties, high surface area and catalytic activity, lignocellulosic bionanomaterials including nanocellulose and nanolignin emerge as very promising raw materials to be used in the development of high-impact biosensors. In this article, the use of lignocellulosic bionanomaterials in biosensor applications is reviewed and major challenges and opportunities are identified.Öğe Printability of variative nanocellulose derived papers(Springer, 2021) Ozcan, Arif; Tozluoglu, Ayhan; Arman Kandirmaz, Emine; Tutus, Ahmet; Fidan, HakanThe printability properties of the paper can be increased by some processes applied to the surface. The use of non-recyclable materials derived from petroleum is decreasing day by day, and the demand for recyclable materials obtained from renewable sources is increasing. These materials include cellulose derivatives, starch types and polyvinyl alcohol. The materials ratios, sizes, physical and chemical properties of these materials used in the processes applied to the paper and the content of the paper will affect the strength of the paper as well as change the surface properties and significantly affect the printability. The aim of this study is to obtain better printability properties by improving the paper surface with CNF/CNF-OX coating. In this study, fluting and core board papers coated with different amounts of cellulose nanofiber (CNF)/cellulose nanofiber-oxidized (CNF-OX) were produced. Surface properties, contact angle, surface energy, color and gloss of the produced papers were measured by optical microscope, goniometer, spectrophotometer and glossmeter. The papers were printed with the IGT C1 offset printability tester. As a result, in terms of printability, it was determined that CNF/CNF-OX coated papers have smoother surfaces and give better results in terms of both gloss properties and printability. [GRAPHICS] .Öğe Reinforcement Potential of Modified Nanofibrillated Cellulose in Recycled Paper Production(North Carolina State Univ Dept Wood & Paper Sci, 2021) Tozluoglu, Ayhan; Fidan, Hakan; Tutus, Ahmet; Arslan, Recai; Sertkaya, Selva; Poyraz, Bayram; Gucus, Mehmet OnurhanThe influence of nanofibrillated cellulose (NFC) was investigated as a reinforcing agent to improve strength properties of papersheets fabricated from recycled pulp fibers of mixtures of old newspapers, old magazines, and old corrugated cardboards. To determine the effects of the NFC on the mechanical and physical properties of the recycled pulp papers, cellulose nanofibrils (NFC) were isolated from wheat straw, pretreated chemically and enzymatically (NFC-OX), and then added to the bulk suspensions of papermaking pulp slurries at various percentages. The electrokinetic and drainage properties of the pulps and the mechanical and physical properties of the papersheets were analyzed and compared. As expected, the addition of NFC/NFC-OX significantly increased the strength properties of papers. Papers containing 4% of NFC-OX (periodate pretreated) presented higher increases in tensile index (43%) and burst index (59.3%) than other papers. However, a high addition of NFC/NFC-OX increased the water retention, which is undesirable for papermaking. Hence, with optimum selection of NFC/NFC-OX and process conditions, higher mechanical properties could be acquired without increasing drainage rate. Compared to the other pretreated NFC/NFC-OX types, sodium-periodate-oxidized NFC-OX samples significantly increased the mechanical properties of the papers fabricated from the recycled pulps.