Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Tian, Shilei" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Efficient Execution of OpenMP on GPUs
    (Ieee Computer Soc, 2022) Huber, Joseph; Cornelius, Melanie; Georgakoudis, Giorgis; Tian, Shilei; Diaz, Jose M. Monsalve; Dinel, Kuter; Chapman, Barbara
    OpenMP is the preferred choice for CPU parallelism in High-Performance-Computing (HPC) applications written in C, C++, or Fortran. As HPC systems became heterogeneous, OpenMP introduced support for accelerator offloading via the target directive. This allowed porting existing (CPU) code onto GPUs, including well established CPU parallelism paradigms. However, there are architectural differences between CPU and GPU execution which make common patterns, like forking and joining threads, single threaded execution, or sharing of local (stack) variables, in general costly on the latter. So far it was left to the user to identify and avoid non-efficient code patterns, most commonly by writing their OpenMP offloading codes in a kernel-language style which resembles CUDA more than it does traditional OpenMP. In this work we present OpenMP-aware program analyses and optimizations that allow efficient execution of the generic, CPU-centric parallelism model provided by OpenMP on GPUs. Our implementation in LLVM/Clang maps various common OpenMP patterns found in real world applications efficiently to the GPU. As static analysis is inherently limited we provide actionable and informative feedback to the user about the performed and missed optimizations, together with ways for the user to annotate the program for better results. Our extensive evaluation using several HPC proxy applications shows significantly improved GPU kernel times and reduction in resources requirements, such as GPU registers.

| Düzce Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Düzce Üniversitesi, Kütüphane ve Dokümantasyon Daire Başkanlığı, Düzce, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim