Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Taskin, Eylem" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Diazoxide attenuates DOX-induced cardiotoxicity in cultured rat myocytes
    (Taylor & Francis Ltd, 2024) Guven, Celal; Taskin, Eylem; Aydin, Ozgul; Kaya, Salih Tunc; Sevgiler, Yusuf
    Doxorubicin (DOX)-induced cardiotoxicity is a well known clinical problem, and many investigations have been made of its possible amelioration. We have investigated whether diazoxide (DIA), an agonist at mitochondrial ATP-sensitive potassium channels (mitoKATP), could reverse DOX-induced apoptotic myocardial cell loss, in cultured rat cardiomyocytes. The role of certain proteins in this pathway was also studied. The rat cardiomyocyte cell line (H9c2) was treated with DOX, and also co-treated with DOX and DIA, for 24 h. Distribution of actin filaments, mitochondrial membrane potential, superoxide dismutase (SOD) activity, total oxidant and antioxidant status (TOS and TAS, respectively), and some protein expressions, were assessed. DOX significantly decreased SOD activity, increased ERK1/2 protein levels, and depolarised the mitochondrial membrane, while DIA co-treatment inhibited such changes. DIA co-treatment ameliorated DOX-induced cytoskeletal changes via F-actin distribution and mitoKATP structure. Co-treatment also decreased ERK1/2 and cytochrome c protein levels. Cardiomyocyte loss due to oxidative stress-mediated apoptosis is a key event in DOX-induced cytotoxicity. DIA had protective effects on DOX-induced cardiotoxicity, via mitoKATP integrity, especially with elevated SUR2A levels; but also by a cascade including SOD/AMPK/ERK1/2. Therefore, DIA may be considered a candidate agent for protecting cardiomyocytes against DOX chemotherapy.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Silencing HMGB1 expression inhibits adriamycin's heart toxicity via TLR4 dependent manner through MAPK signal transduction
    (Imprimatur Publications, 2020) Taskin, Eylem; Guven, Celal; Kaya, Salih Tunc; Sariman, Melda; Emrence, Zeliha; Ekmekci, Sema Sirma; Akcakaya, Handan
    Purpose: Adriamycin (APR) is a commonly used anti-cancer drug. ADR has toxic effects on cardiomyocytes and leads to heart failure. However, the underlying mechanism(s) by which ADR causes heart failure is still not clarified exactly. The aim of present study is to investigate whether ADR-induced heart failure is mediated via HMGB1/TLR4 to initiate the apoptosis through MAPK/AMPK pathways. Methods: H9c2 cell line was used to create four groups as a control, HMGB1 inhibition, ADR, ADR+HMGB1 inhibition. Silencing HMGB1 was performed with specific small interfering RNA. ADR was used at 2 mu M concentration for 36 and 48 hours. Protein and genes expressions, apoptosis was measured. Results: Although ADR decreased AMPK, pAMPK, ERK1/2, pERK1/2, p38, JNK protein expression, ADR+HMGB1 inhibition led to change those protein expressions. The effect of silencing of HMGB1 prevented apoptosis induced by ADR in the cells. HMGB1 caused changes a kind of posttranscriptional modification on the TLR4 receptor. This posttranscriptional modification of TLR4 receptor led to decreased AMPK protein level, but phosphorylated-AMPK. This alternation of AMPK protein caused enhancing of JNK protein, resulting from the decline of p38 and ERK protein levels. Eventually, JNK triggered apoptosis by a caspase-dependent pathway. The number of TUNEL positive and active caspase 8 cells at ADR was high, although HMGB1 silencing could decrease the cell numbers. Conclusions: Inhibition of HMGB1 might prevent the lose of the cardiac cell by inhibition of apoptotic pathway, therefore HMGB1 plays an essential role as amplifying on ADR toxicity on the heart by TLR4.

| Düzce Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Düzce Üniversitesi, Kütüphane ve Dokümantasyon Daire Başkanlığı, Düzce, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim